

IEEE Meeting – Central Tennessee Section

LED Lighting Overview

Bobby Brooks

11-8-2018

McGraw-Edison

A History of Light Sources

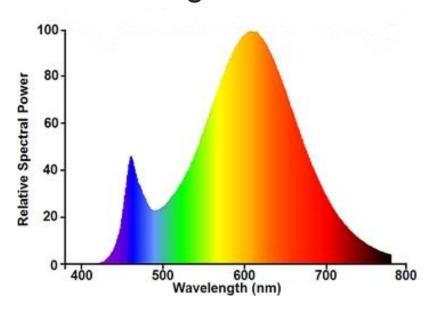
- ~400,000 BCE Fire is discovered.
- ~3000 BCE Oil lamps are open bowls with a spout to hold the wick.
- ~400 The candle is invented.
- 1809 Sir Humphrey Davey demonstrates electrical discharge lighting to the Royal Institution in London, using an open-air arc between two carbon rods. The result is a very intense, and very pure white light. Unfortunately, as the arc runs, carbon boils off and the rods wear away: constant attention must be paid to readjusting the arc, feeding more carbon in.
- 1841 Frederick DeMoleyns patented incandescent lamp using filaments of platinum and carbon, protected by a vacuum.
- 1880 Thomas Edison receives U.S. patent #223,898 for the carbon filament incandescent lamp.
- 1932 Low pressure sodium lamps are first used commercially.
- 1934 The high-pressure mercury lamp is introduced.
- 1938 First commercial sale of the fluorescent lamp
- 1957 The quartz halogen lamp (A.K.A. tungsten halogen lamp) is invented. In conventional tungsten lamps, the filament metal slowly evaporates and condenses on the glass envelope, leaving a black stain. In this case, the halogen removes the deposited tungsten and puts it back on the filament.
- 1962 First light emitting diode (LED)
- 1966 Commercial introduction of the high pressure sodium lamp
- 1969 A new form of metal halide lamp, the HMI lamp (mercury medium arc iodides) is introduced. The H stands for mercury (atomic symbol "Hg"), M is for Metals and the I is for halogen components (iodide, bromide). It provides a daylight type spectrum.

LED vs Traditional Light Sources

Strengths

- No filaments like incandescent lamps.
- No electrodes like gas discharge lamps (HPS, Metal Halide, and Fluorescent).
- No Mercury in the Light Source
- ➤ Instant On, Full Color, 100% Light, dimming options
- Promise of Long Life Reduced Maintenance Costs

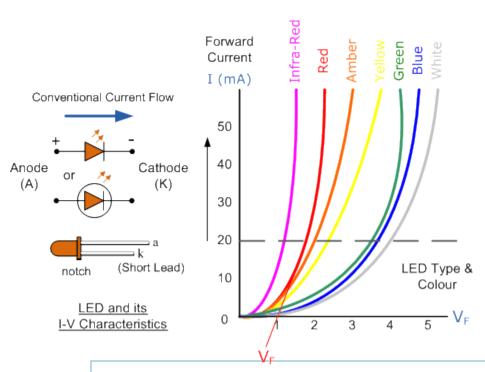
Weakness


- Higher initial cost compared to traditional light sources.
- Electronic LED driver life can be drastically reduced if exposed to high heat levels.
- Electronic LED drivers provide only a fraction of the surge protection that is offered by HID core and coil ballasts.

What is an LED?

Light-Emitting

White light is generated through a *phosphor* conversion process of the blue wavelength emitted from the *die*



Color spectrum for LEDs contains a peak in the blue wavelength and causes objects to look more blue than other sources

What is an LED?

LEDs are semiconductor components which exhibit an exponential I-V characteristic, DC current/voltage

Characteristics:

Polarized (Anode +)(Cathode -)

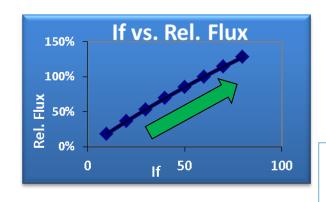
Typical Voltage ~ 3V

DC current-driven

(more current = more light, little change in Vf)

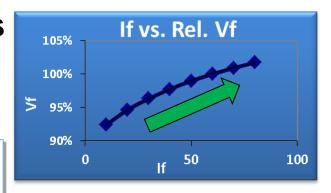
Power = Heat + Light

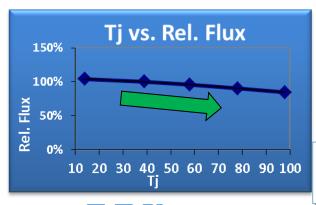
ESD & Dust Sensitive devices


Careful attention to polarity and current applied

Reverse polarity or too much current can permanently damage an LED

LED Characteristics

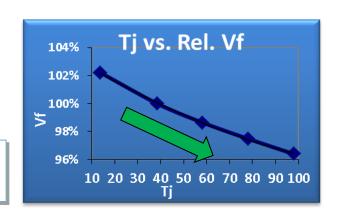

LEDs are primarily impacted by *drive current* and *temperature*.



As current changes

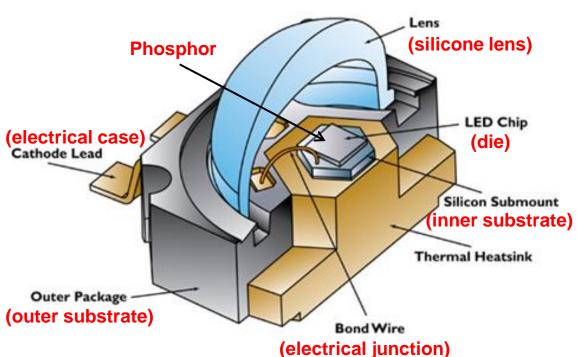
- Voltage changes little
- Light output changes significantly

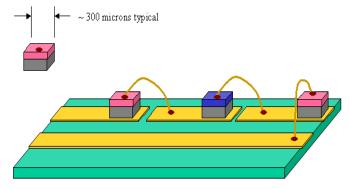
LEDs are more efficient at lower current



As temp changes

- Voltage changes little
- Light output changes little

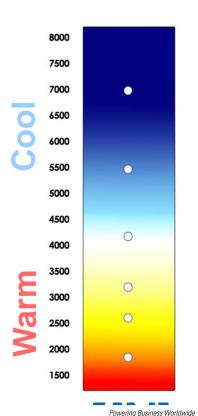

LEDs are more efficient at lower temperatures



LED Package

A white LED package consists of die/dice, phosphor, electrical connections, substrate, and lens

An LED package may contain one or more LED die to increase amount of light in a smaller area.



Example: Chip on Board (COB) – Wire bonding

Color and Binning

An LED can be made into different *color temperatures* (CCT) and *color rendering indices* (CRI) by using a different mix of *phosphors*.

Daylight with Diffused Clouds - 7000K

Daylight - 5500K

Fluorescent - 4200K

Tungsten - 3200K

Incandescent - 2700K

Candle - 1800K

Common CCTs:

2700K, 3000K, 3500K, 4000K, 5000K

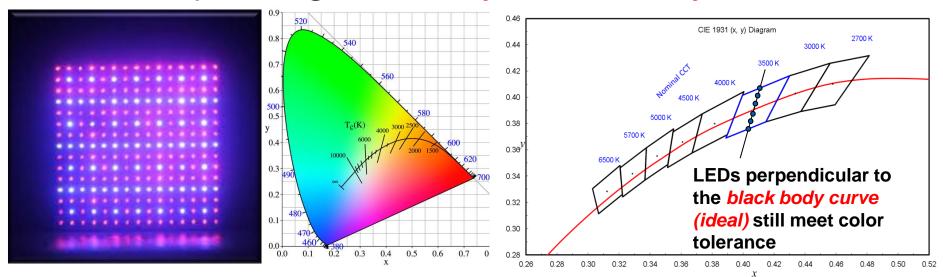
Differences in CCT can be challenging to visually distinguish

Common CRI:

70, 80, 90

Extremely difficult to determine CRI

Higher CRI = larger color gamut Incandescent Lamp = 100 CRI (Ref)

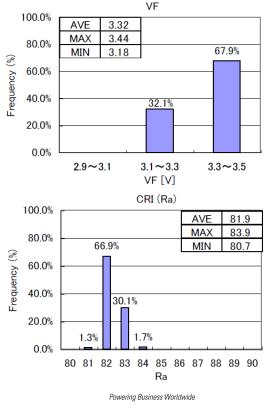

© 2018 Eaton. All rights reserved.

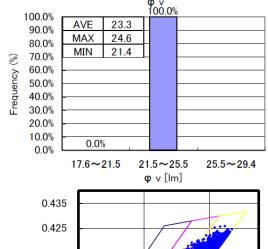
⁰ 1(

Color and Binning

Powering Business Worldwide

The human eye is sensitive to color contrasts. This is why the color tolerance is critical to LED applications. Even though an LED may measure 3500K, it can look different depending on the *x-y chromaticity coordinate*.

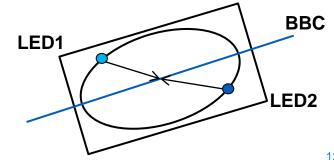



Always pay attention to brightness and color of LEDs

© 2018 Eaton. All rights reserved.

Color and Binning

Binning is a sorting process for LED manufacturers to utilize all parts made in production. Shipments are arranged by CCT, Vf, and lumens. If more than one LED is used in a fixture, it becomes challenging to maintain consistent light output and color.



0.435 0.425 0.415 > 0.405 0.395 0.375 0.430 0.450 0.470 © 2010 EdiUII. All lights lesselved.

Recipe Binning (Color):

A technique to fully utilize LED yield by arranging parts of opposing color coordinates to create an **average** which falls on the **black body curve**.

² 12

LED Boards and Modules

An LED module consists of one or more LEDs electrically connected and mounted on a heatsink (which can be the fixture). Sometimes a PCB (Printed Circuit Board) is used.

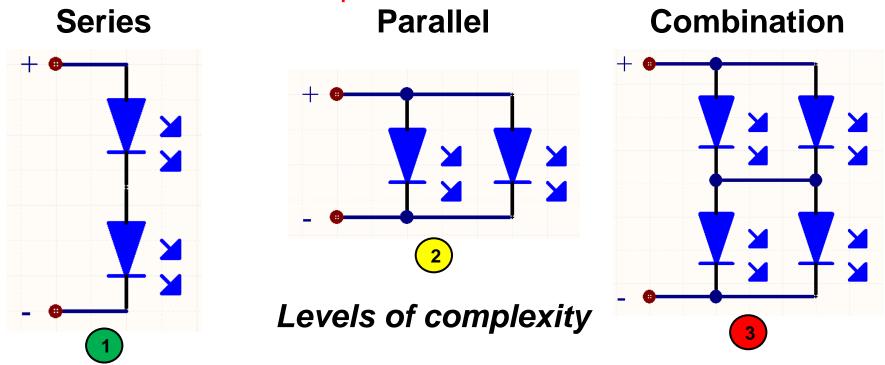
Ensure good attachment of LEDs to heatsink/fixture for performance and lifetime.

Circuit Boards:

PCBs are used with discrete LED packages to arrange the components electrically. FR-4 (glass-epoxy) and Metal Core (aluminum with dielectric) are common materials used.

Color Coding:

Typically the LED positive(+) is a **RED** wire And the negative(-) is a **BLACK/BLUE** wire


LEDs can be easily damaged during the mounting process

Light Engine

Powering Business Worldwide

LEDs can be arranged in many ways to achieve design voltage and current configurations. They can be wired in series, parallel, or a combination of series/parallel.

There are advantages and disadvantages of each configuration

Types of LEDs

High Power Discrete

Advantages:

Design flexibility Large supply base

Disadvantages:

Pixilation Cost

Mid Power Discrete

Advantages:

Design flexibility Largest supply base Lowest Cost

Disadvantages:

Optically complex

Chip on Board (COB)

Advantages:

Easy to use optically High lumen density Cost Flexibility

Disadvantages:

Lower LM-80

Chip Scale Package (CSP)

Advantages:

Design flexibility
Cost improving
Easy array (color tuning)

Disadvantages:

Five sided emitter Cross talk

Life Rating of Light Source

Note regarding life ratings:

- Life for HID is calculated when 50% of lamps are burned out.
- Life for LED is calculated via IESNA TM-21, limits life claim to 6 x the number of hours tested. Typical is 60,000hours. Life is then given as the lumen depreciation estimated at that life number.

For example, $L_{90}60$ is 90% lumen depreciation at 60,000 hours.

IESNA LM-80 Test Report on the Philips Lumileds Luxeon TX LED

Luminous flux depreciation information

Normalized Flux Statistics for If = 1000mA (L1T2-407000000000)

itoimanzea i					·		,,,,											
		0hrs	24hrs	168hrs	500hrs	1000hrs	2000hrs	3000hrs	4000hrs	5000hrs	6000hrs	7000hrs	8000hrs	9000hrs	10000hrs	alpha	В	L70
DATASET 59	median =	1.0000	0.9956	1.0010	1.0154	1.0268	1.0369	1.0405	1.0387	1.0293	1.0211	1.0139	1.0161	1.0219	1.0156			
Ts=Tair=105°C	average =	1.0000	0.9955	1.0008	1.0158	1.0268	1.0365	1.0368	1.0361	1.0302	1.0179	1.0111	1.0168	1.0214	1.0166	1.4576e-06	1.0302	265,099
	st dev =	0.0000	0.0028	0.0038	0.0060	0.0056	0.0079	0.0098	0.0123	0.0154	0.0179	0.0154	0.0154	0.0147	0.0148	TM-21 L70	(10k) > 60),000hrs
	min =	1.0000	0.9909	0.9922	1.0069	1.0172	1.0199	1.0162	1.0073	1.0032	0.9733	0.9747	0.9842	0.9902	0.9808			
	max =	1.0000	1.0025	1.0106	1.0335	1.0419	1.0505	1.0521	1.0544	1.0560	1.0454	1.0355	1.0441	1.0455	1.0365			
DATASET 60	median =	1.0000	0.9935	0.9909	1.0138	1.0153	1.0147	1.0157	1.0107	1.0119	1.0093	1.0057	1.0105	1.0087	1.0072			
Ts=Tair=85°C	average =	1.0000	0.9927	0.9894	1.0136	1.0144	1.0138	1.0145	1.0104	1.0112	1.0095	1.0055	1.0096	1.0081	1.0063	6.9519e-07	1.0136	532,523
	st dev =	0.0000	0.0032	0.0055	0.0064	0.0054	0.0065	0.0058	0.0067	0.0067	0.0081	0.0088	0.0099	0.0094	0.0106	TM-21 L70	(10k) > 60),000hrs
	min =	1.0000	0.9815	0.9697	0.9946	0.9968	0.9933	0.9966	0.9903	0.9933	0.9889	0.9855	0.9858	0.9864	0.9828			
	max =	1.0000	0.9973	0.9971	1.0296	1.0205	1.0210	1.0213	1.0211	1.0252	1.0272	1.0251	1.0302	1.0292	1.0272			
DATASET 61	median =	1.0000	0.9951	0.9924	1.0121	1.0137	1.0117	1.0112	1.0102	1.0063	1.0056	1.0015	1.0026	1.0029	1.0016			
Ts=Tair=55°C	average =	1.0000	0.9947	0.9909	1.0118	1.0109	1.0103	1.0103	1.0087	1.0036	1.0035	0.9985	1.0007	0.9998	0.9994	8.5027e-07	1.0073	428,057
	st dev =	0.0000	0.0029	0.0066	0.0093	0.0089	0.0107	0.0115	0.0114	0.0108	0.0121	0.0124	0.0127	0.0125	0.0135	TM-21 L70	(10k) > 60),000hrs
	min =	1.0000	0.9853	0.9693	0.9893	0.9860	0.9838	0.9822	0.9810	0.9771	0.9758	0.9700	0.9719	0.9709	0.9692			
	max =	1.0000	0.9982	0.9967	1.0318	1.0219	1.0281	1.0251	1.0222	1.0155	1.0183	1.0136	1.0164	1.0146	1.0157			

After 10,000 hours of testing the Luxeon Tx LED has actually increased at the 85°C and 105°C temperatures with only a .0006 decrease at 55°C

The unparalleled lumen maintenance of the Luxeon TX leads to superior maintained light levels even after 85,000 hours of operation.

IESNA LM-80 Test Report on the Philips Lumileds Luxeon TX LED

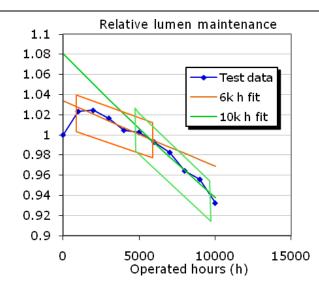
Color or kelvin temperature shift information

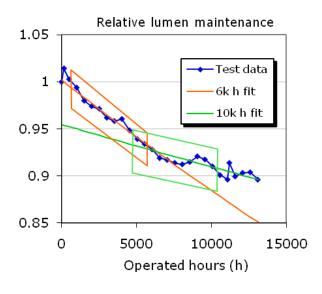
Delta u'v' for	If = 1000n	nA (L11	Γ2-4070	000000	0000)										
		0hrs	24hrs	168hrs	500hrs	1000hrs	2000hrs	3000hrs	4000hrs	5000hrs	6000hrs	7000hrs	8000hrs	9000hrs	10000hrs
DATASET 59	median =	0.0000	0.0002	0.0002	0.0004	0.0003	0.0006	0.0007	0.0009	0.0011	0.0009	0.0024	0.0031	0.0031	0.0029
Ts=Tair=105°C	average =	0.0000	0.0002	0.0002	0.0004	0.0004	0.0007	0.0008	0.0010	0.0011	0.0009	0.0025	0.0031	0.0031	0.0029
	st dev =	0.0000	0.0001	0.0001	0.0002	0.0002	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0004	0.0004	0.0004
	min =	0.0000	0.0001	0.0000	0.0001	0.0001	0.0001	0.0002	0.0004	0.0004	0.0001	0.0016	0.0023	0.0022	0.0020
	max =	0.0000	0.0004	0.0005	0.0008	0.0008	0.0017	0.0018	0.0018	0.0018	0.0019	0.0035	0.0043	0.0041	0.0040
DATASET 60	median =	0.0000	0.0004	0.0003	0.0004	0.0004	0.0005	0.0005	0.0005	0.0005	0.0006	0.0006	0.0005	0.0005	0.0003
Ts=Tair=85°C	average =	0.0000	0.0004	0.0003	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004
	st dev =	0.0000	0.0001	0.0001	0.0003	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0002	0.0003
	min =	0.0000	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000
	max =	0.0000	0.0005	0.0005	0.0010	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0009	0.0008	0.0008	0.0008
DATASET 61	median =	0.0000	0.0003	0.0005	0.0007	0.0010	0.0010	0.0009	0.0007	0.0008	0.0009	0.0011	0.0010	0.0009	0.0010
Ts=Tair=55°C	average =	0.0000	0.0003	0.0005	0.0007	0.0009	0.0009	0.0008	0.0006	0.0007	0.0008	0.0009	8000.0	0.0007	0.0008
	st dev =	0.0000	0.0001	0.0001	0.0002	0.0003	0.0004	0.0004	0.0003	0.0003	0.0004	0.0004	0.0004	0.0003	0.0004
	min =	0.0000	0.0002	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0000	0.0001	0.0001
	max =	0.0000	0.0004	0.0007	0.0010	0.0013	0.0013	0.0013	0.0010	0.0011	0.0012	0.0013	0.0012	0.0011	0.0012

In-situ case operating temperature of 86°C the NVN LED at 25C ambient at 86°C shows minimal color shift over the 10,000 hour test period.

TM-21-11

- LM-80 -- only an LED testing standard
- IES TM-21-11 -- mathematical framework for LM-80 data and making useful LED lifetime projections


Key points of TM-21:


- Developed by major LED suppliers with support of NIST, PNNL
- Projection limited to 6x the available LM-80 data set
- Projection algorithm: least squares fit to the data set
- L₇₀, L₈₀, L₉₀, L_{xx} projections easily possible
- Nomenclature: L_p(Yk)where p is Lumen Maintenance percentage and Y is length of LM-80 data set in thousands of hours ie: L₈₅(10k)

TM-21 – Use the latest data

- ➤ Initial data variability (i.e. "hump") is difficult for models to evaluate (0-1000 hr)
- ➤ Later data exhibits more characteristic decay curve of interest
 - Non-chip decay (encapsulant, etc.) occurs early and with varying effects on decay curve
 - Later decay is chip-driven and relatively consistent with exponential curve
 - Verification with long duration data sets (>10,000 hr) shows better model to reality fit with last 5,000 hours of 10,000 hour data
- ➤ For 6,000 hours of data (LM-80 minimum) and up to 10,000 hours: Use last 5,000 hours
- ➤ For > 10,000 hours: Use the last ½ of the collected data

Thermal report to confirm driver TC and COB operating temperature at 40°C ambient

#		Location		Meas.	Norm	Lim.				86.609	5 °C	
1	DRIVER Tc			64.74	65	80						M. DE
4	LED 1 CATHO	ODE		72.75	73	105						7
5	LED 2 CATHO	ODE		68.94	69	105				39.944	7 °C	
40	Ambient			38.98	40	40	æ		1			
El	ectrical Data	Volts	Am	nps	Wa	itts		Test Time	St	art	Stop	Duration
	Initial	119.60	1.10		130.50			Date	2017-03	3-17	2017-03-17	
	initiai	115.00										

The above thermal report was performed at 120V in a 40C (104F) ambient environment for 7 hours and 30 minutes. The hottest running COB will be used in the TM-21 calculator.

Excellent lumen maintenance at both 25C and 40C (93% at 60,000 hours at 40C)

TM-21 Inputs

Instructions

Yellow fields are completed by the user. Fields not used should be left blank. Cyan fields are calculated based on user entries.

First, enter a description of the LED light source tested. Then complete the fields labeled "LM-80 Testing Details". Test duration must be at least 6,000 hours. If only one case temperature data set is to be used (no interpolation), complete only "Tested case temperature 1". For only two case temperature data sets, complete 1 and 2.

Next, further to the right, in the corresponding box(es) for each tested case temperature, enter the test data along with the time (in hours) at which each measurement was taken. Data entered must be normalized then averaged measured data (per TM-21 sections 5.2.1 and 5.2.2).

Enter drive current, in-situ temperature data and the percentage of initial lumens to project to in the fields labeled "In-Situ Inputs".

Results can be tailored to estimate lumen maintenance at a specific time by entering a value (t) in the yellow field.

A complete TM-21 report will appear on the next tab labeled "Report".

Description of LED Light Source Tested
(manufacturer, model, catalog number)
Two Citizen CLL042-1818 in Verdeon (grey heat sink/reflector), 40C ambient environment

LM-80 Testing Details	
Total number of units tested per case temperature:	20
Number of failures:	0
Number of units measured:	20
Test duration (hours):	7000
Tested drive current (mA):	2160
Tested case temperature 1 (T _c , ^o C):	55
Tested case temperature 2 (T _c , ^o C):	85
Tested case temperature 3 (T _c , ⁰ C):	105

LM-80 Test Inputs

	0ata for 55ºC Case Temperature		ata for 85ºC Case Temperature	Test Data for 105⁰C Case Temperature			
Time (hours)	Lumen Maintenance (%)	Time (hours)	Lumen Maintenance (%)	Time (hours)	Lumen Maintenance (%)		
0	100.00%	0	100.00%	0	100.00%		
1000	99.80%	1000	99.20%	1000	97.70%		
2000	99.00%	2000	98.20%	2000	97.20%		
3000	98.80%	3000	97.90%	3000	97.30%		
4000	98.30%	4000	97.90%	4000	97.20%		
5000	98.50%	5000	98.10%	5000	96.60%		
6000	98.20%	6000	97.90%	6000	95.80%		
7000	98.00%	7000	97.50%	7000	95.10%		

In-Situ Inputs

Drive current for each LED package/array/module (mA):	1150
In-situ case temperature (Tc, °C):	84
Percentage of initial lumens to project to (e.g. for L ₇₀ , enter 70):	70

Results

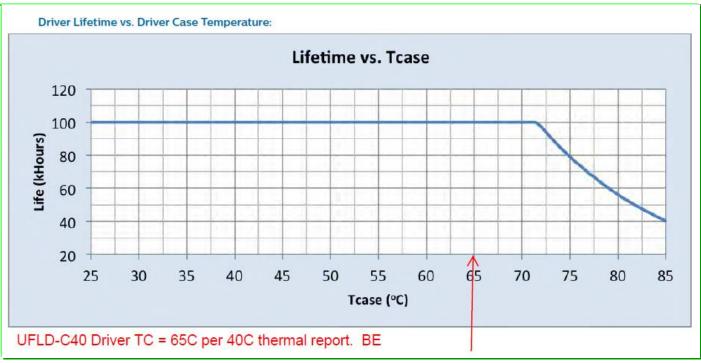
Time (t) at which to estimate lumen maintenance (hours):	60,000
Lumen maintenance at time (t) (%):	93.16%
Calculated L70 (hours):	350,000
Reported L70 (hours):	>42000

Energy Star TM-21 Report

TM-21 Report

e 1: Report at each LM-8 umiLeds Rebel ES Test Condition 2 - 85°C cample size lumber of failures OUT drive current used in the test (mA)		Test Condition 3 - 105°C Sample size Number of failures DUT drive current used	C Case Temp 25 0		2: Interpolation Report d on in-situ temperature entered) 55.00 328.15 8.528E-07 1.007 85.00
Test Condition 2 - 85°C sample size lumber of failures our frive current used to the test (mA)	25 0	Sample size Number of failures	25	T _{s,1} (°C) T _{s,1} (K) α ₁ Β ₁	55.00 328.15 8.528E-07 1.007
sample size lumber of failures DUT drive current used in the test (mA)	25 0	Sample size Number of failures	25	T _{s,1} (K) α ₁ Β ₁	328.15 8.528E-07 1.007
sample size lumber of failures DUT drive current used in the test (mA)	25 0	Sample size Number of failures	25	α ₁ Β ₁	8.528E-07 1.007
sample size lumber of failures DUT drive current used in the test (mA)	25 0	Sample size Number of failures	25	B ₁	1.007
lumber of failures OUT drive current used on the test (mA)	0	Number of failures	-		
OUT drive current used the test (mA)	-		0	T- o (°C)	9E 00
the test (mA)	1000	DLIT drive current used		1 S,2 ()	00.00
ant duration (hours)		in the test (mA)	1000	T _{s,2} (K)	358.15
est duration (nours)	10,000	Test duration (hours)	10,000	α_2	6.966E-07
est duration used for rojection (hour to hour)	5,000 - 10,000	Test duration used for projection (hour to hour)	5,000 - 10,000	B ₂	1.014
ested case emperature (°C)	85	Tested case temperature (°C)	105	E _a /k _b	-7.93E+02
	6.966E-07	α	1.444E-06	Α	7.617E-08
	1.014	В	1.030	B_0	1.010
calculated L70(10k) nours)	531,000	Calculated L70(10k) (hours)	268,000	T _{s,i} (°C)	74.00
Reported L70(10k) nours)	>60000	Reported L70(10k) (hours)	>60000	T _{s,i} (K)	347.15
				α_{i}	7.472E-07
				Projected L70(10k) at 74°C (hours)	491,000
				Reported L70(10k) at 74°C (hours)	>60000
ro res es al	st duration (hours) st duration used for ojection (hour to hour) sted case nperature (°C) lculated L70(10k) ours) ported L70(10k)	st duration (hours) 10,000 st duration used for objection (hour to hour) 5,000 - 10,000 sted case nperature (°C) 6.966E-07 1.014 lculated L70(10k) 531,000 ported L70(10k) 560000	10,000 Test duration (hours) 10,000 Test duration (hours)	10,000 10,000	st duration (hours) 10,000 Test duration (hours) 10,000 α_2 St duration used for pojection (hour to hour) 10,000 Test duration used for projection (hour to hour) 10,000 α_2 Steed case stemperature (°C) α_1 Test duration used for projection (hour to hour) 10,000 α_2 Steed case stemperature (°C) α_1 1.04 α_2 1.444E-06 α_3 1.014 α_4 1.014 α_5 1.030 α_5 1.014 α_5 1.030 α_5 1.030 α_5 1.044E-06 α_5 1.054E-07(10k) (hours) α_5 1.054E-07(10k) α_5 1.0

Superior thermal management results in long life


PHILIPS ADVANCE

LED Driver

Xitanium

150W 120-277V 1.05A 0-10V XI150C105V140CNF1

The above driver data sheet indicates that the driver lifetime is 100,000 hours with a Tcase operating temperature of 72C or lower. The UFLD-C40 thermal report had a Tcase temperature of 65°C when operating in a 40°C ambient environment.

Superior thermal management results in long life

GENERAL INFORMATION	
Item Number	79369
Туре	Constant Current
Output Power	100W (Max.)
Programming tool	51645; Software
	Output current
	Dimming level
	LED thermal protection
Programmable features	AstroDIM
	LEDSet Gen2
	Constant Lumen output
	End of life indicator

The above driver data sheet indicates that the driver lifetime is 100,000 hours with a Tcase operating temperature of 75C or lower. The UFLD-C40 thermal report had a Tcase temperature of 75°C when operating in a 50°C ambient environment.

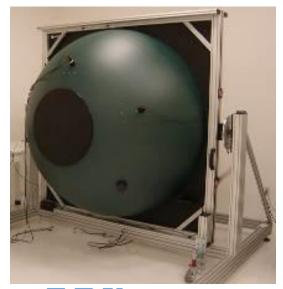
Absolute and Relative Photometry

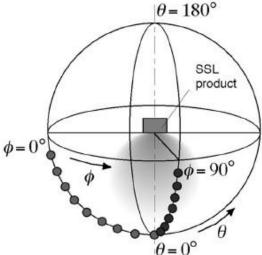
Absolute Photometry

- LED luminaires LM-79-08
- Lamps integral to luminaire
- No lamp seasoning, calibrated to lamp of known output
- Actual lumen output measured
- Unique results for each product

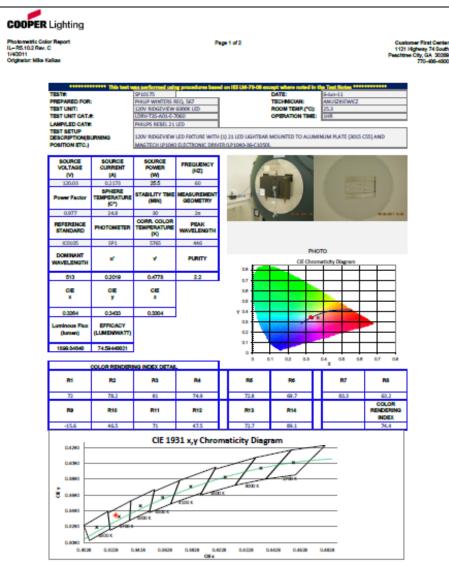
Relative Photometry

- Bare lamps measured separately.
 - Seasoned (aged) lamps
 - Output stabilization
 - Raw output measured
- Luminaire test
 - Same lamps and ballast
 - Identical electrical and thermal characteristics
 - Results scaled to initial rated lamp lumens
- Same results with different lamps

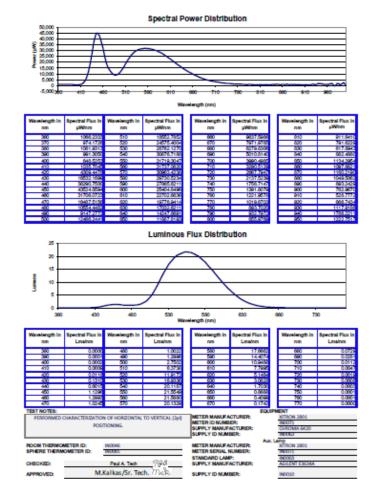


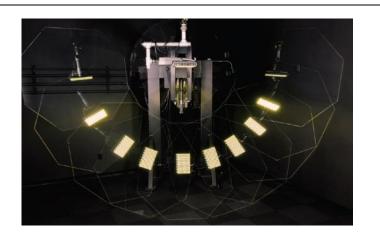

Photometric Testing per IES LM-79-08

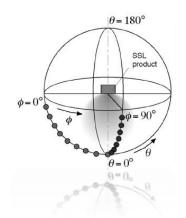
- Electrical and Photometric Measurements of Solid-State Lighting Products
 - Luminaire based absolute photometry
 - Total Luminous Flux
 - Luminous Intensity Distribution
 - Electrical Power
 - Luminous Efficacy (LPW calculated)
 - Color Characteristics
 - Chromaticity
 - CCT
 - CRI

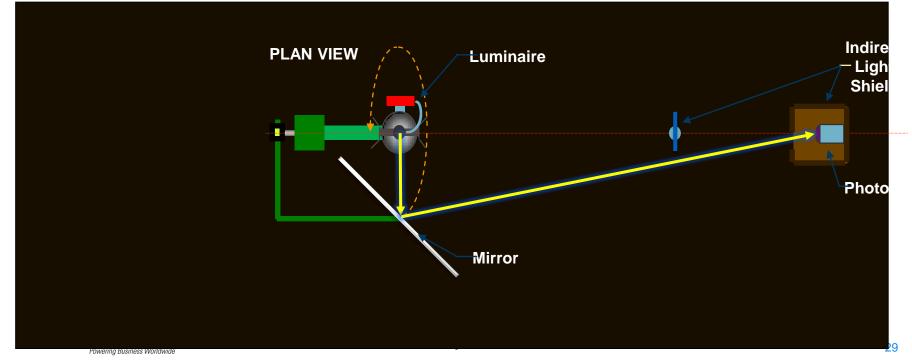


Integrating Sphere




Integrating Sphere Report



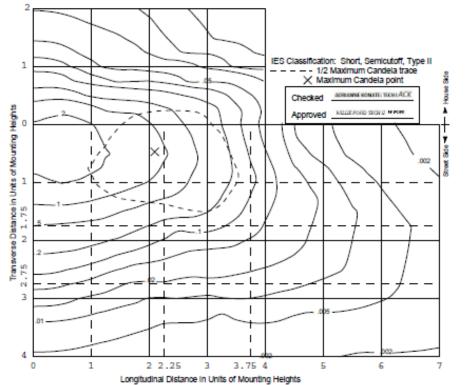

Measuring Luminaire Performance

Goniophotometer

An apparatus for measuring the directional light distribution characteristics of light sources, luminaires, media, and surfaces.

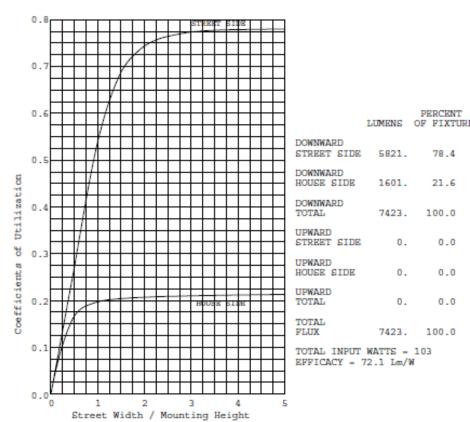
Absolute IES file information from Goniophotometer

PAGE: 3 OF 7


Cooper Lighting Photometrio Lab 1121 HWY 74 South Peachtree City, Ga 30269 PHOTOMETRIC TEST REPORT

Cooper Lighting Photometrio Lab 1121 HWY 74 South Peachtree City, Ga 30269 PHOTOMETRIC TEST REPORT

> ISOFOOTCANDLE LINES OF HORIZONTAL ILLUMINATION foot mounting height.


REPORT NUMBER: P92850 ISSUE DATE: 7/13/2012 PAGE: 1 OF 7 CATALOG NUMBER: NVN-AA-02-E-U-SL2 LUMINAIRE: NAVION LED ROADWAY LUMINAIRE (2) LIGHTSQUARES WITH 14 LEDS EACH AND TYPE 2 WITH SPILL CONTROL OPTICS ELECTRONIC DRIVER ABSOLUTE DATA SHOWN IS ABSOLUTE FOR THE SAMPLE PROVIDED ABSOLUTE

PHOTOMETRY IS BASED ON CALIBRATION FACTORS CREATED USING LAB LUMEN STANDARDS IN GONIOPHOTOMETER WITH TEST DISTANCE OF 28.75 FEET

REPORT NUMBER: P92850 ISSUE DATE: 7/13/2012 CATALOG NUMBER: NVN-AA-02-E-U-SL2

COEFFICIENTS OF UTILIZATION AND FLUX DISTRIBUTION

ALL CANDELA AND LUMENS IN THIS REPORT ARE BASED ON ABSOLUTE PHOTOMETRY.

THE COEFFICIENT OF UTILIZATION VALUES ARE BASED ON THE TOTAL ABSOLUTE LUMEN OUTPUT OF THIS LUMINAIRE SAMPLE.

National Voluntary Laboratory Accreditation Program - NVLAP

The National Voluntary Laboratory Accreditation Program (NVLAP)

provides third-party accreditation to testing and calibration laboratories.

NVLAP operates an accreditation system that is compliant with ISO/IEC 17011, Conformity assessment — General requirements for accreditation bodies accrediting conformity assessment bodies, which requires that the competence of applicant laboratories be assessed by the accreditation body against all of the requirements of ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories.

May 3, 2012

Mr. Chad Ruhala Cooper Lighting Photometric Laboratory 1121 Highway 74 South Peachtree City, GA 30269

Dear Mr. Ruhala:

NVLAP Lab Code: 200050-0

I am pleased to inform you that continuing accreditation for specific test methods in Energy Efficient Lighting Products is granted to your organization under the National Voluntary Laboratory Accreditation Program (NVLAP). This accreditation is effective until June 30, 2013, provided that your organization continues to comply with accreditation requirements contained in the NVLAP Procedures.

Your Certificate of Accreditation is enclosed along with a statement of your Scope of Accreditation. You may reproduce these documents in their entirety and announce your organization's accreditation status using the NVLAP symbol and/or term in business publications, the trade press, and other business-oriented literature. Accreditation does not relieve your organization from observing and complying with any applicable existing laws and/or regulations.

We are pleased to have you participate in NVLAP and look forward to your continued association with this program. If you have any questions concerning your NVLAP accreditation, please direct them to Tim Rasinski, Program Manager, Laboratory Accreditation Program, National Institute of Standards and Technology, 100 Bureau Dr. Stop 2140, Gaithersburg, MD 20899-2140; (301) 975-4016.

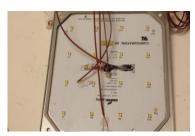
Sincerely.

Mr. R. M. Q

Warren R. Merkel, Chief Laboratory Accreditation Program

Enclosure(s)

NIST/NVLAP • 100 Bureau Drive, Stop 2140 • Gaithersburg, MD 20899-2140 http://www.nist.gov/nvlap



Thermal Test Information

At right is a sample thermal test report on an outdoor LED luminaire. Note readings are taken on many parts of the luminaire including the LED case, driver and surge module.

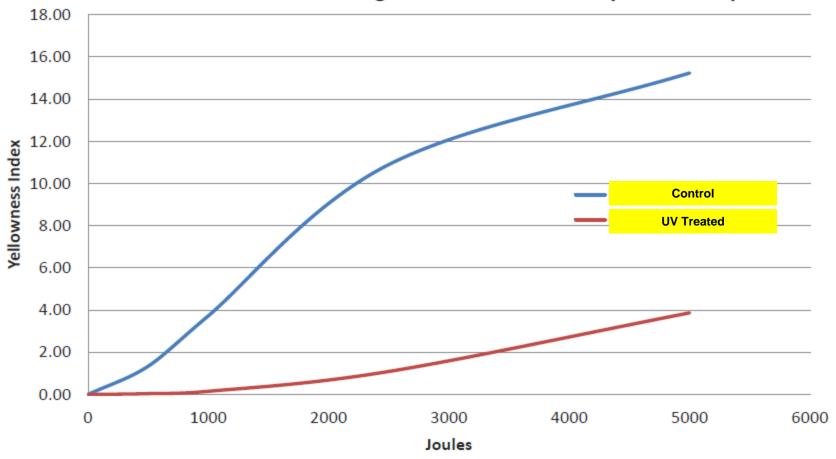
	Description	RAW	Adj.	3 Hr	Up	Td	St
1	L- SQR (1) LED SLUG	95.4	94	0	0	~	
2	L-SQR (1) OPTIC	86.3	85	0	0	~	
3	L-SQR (1) GASKET	79.8	78	0	0	~	
4	L-SQR (1) WIRE GROMMET	85.4	84	0	0	✓	
5	L-SQR (1) LINE LEAD (INSIDE)	86.9	85	0	0	~	
6	L-SQR (1) SOLDER PAD	88.3	87	0	0	~	
7	L- SQR (2) LED SLUG	91.9	90	0	0	~	
8	L- SQR (2) OPTIC	70.9	69	0	0	~	
9	L-SQR (2) GASKET	70.8	69	0	0	~	
10	L- SQR (2) WIRE GROMMET	72.4	71	0	0	~	
11	L- SQR (2) LINE LEAD (INSIDE)	71.2	69	0	0	~	
12	L-SQR (2) SOLDER PAD	72.1	70	0	0	✓	
13	ADVANCE LED Driver Center (not required	77.1	75	0	0	~	
14	ADVANCE DRIVER Case marked HOTSPOT	67.9	66	0	0	~	
15	ADVANCE DRIVER - 0.5 in from INPUT	72.7	71	0	0	~	
16	ADVANCE DRIVER - 0.5 in from OUTPUT	71.1	69	0	0	~	
17	SURGE PROTECTOR (TOP)	65.9	64	0	0	~	
18	SURGE PROTECTOR (SIDE-1)	68.4	67	0	0	~	
19	GASKET - SIDE	51.3	50	0	0	~	
20	WIRE CONNECTOR	69.7	68	0	0	✓	
21	QUICK DISCONNECT WIRING HARNESS	73.9	72	0	0	~	
22	GASKET - DOOR	58.8	57	0	0	✓	
23	TERMINAL BLOCK	66.8	65	0	0	~	
24	MOTION / WIRELESS SENSOR (INSIDE)	48.3	47	0	0	~	
25	MOTION / WIRELESS SENSOR (GASKET)	57.7	56	0	0		

UV testing on Polycarbonate Plaques

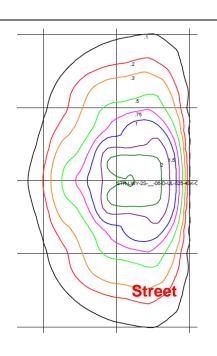
Note: Proper installation of the Navion luminaire will not expose the optical square to direct sunlight.

Background – Polycarbonate is a resilient material that can be used for optical elements in outdoor lighting products. An undesirable aspect of this material is that it will become yellow and lose light transmission over time when exposed to ultraviolet radiation. To minimize this effect the light square polycarbonate material was infused with an ultraviolet inhibitor.

Purpose – To provide a summary of measurements on the polycarbonate plaques (used on the light square products) that have been exposed to high intensity ultraviolet radiation.


Test – Five plaques were selected for testing with one plaque being untreated and four infused with the UV stabilizer. Each plaque as cut in half so that one half of each plaque could be placed in the UV chamber while the other half could be retained as a control sample. The UV chamber emitted radiation in the wavelength between 300 and 340 nanometers and also cycled through heat, humidity and water exposure to simulate real world conditions. Total lumen output and color characteristics were recorder for each of the samples in an integrating sphere calibrated and maintained under NVLAP accredited program and in conformance with IESNA standards of photometric testing.

Results – After more than 6,000 hours of exposure to high intensity UV radiation the transmittance of the untreated plaque was reduced from 90.4% to 79.2% with a color shift of 600 degrees kelvin. The treated samples showed no reduction in transmittance and less than 1% shift in kelvin temperature (consistent with the LED LM-80 DUV). This test would equal 8.2 years of direct sunlight exposure at 12 hours per day.


UV stabilizers greatly reduce the rate of yellowing on plastic materials

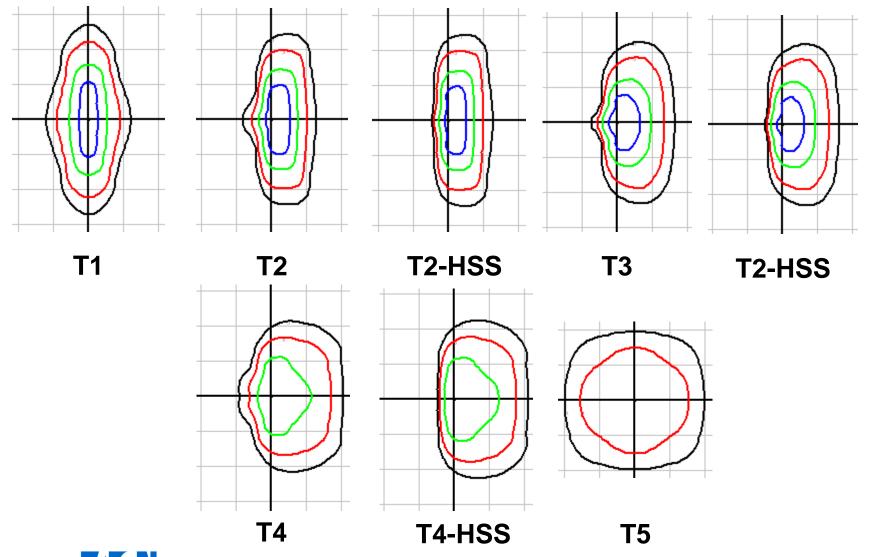
Optical Control Advantage Over External Shields

3
3
5
5
75
75
Street

40' Grid
25' MH

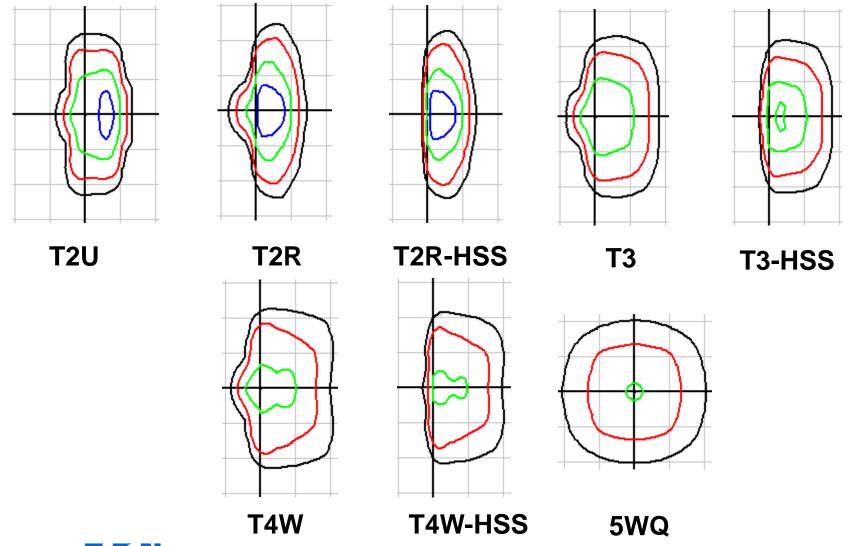
Type 2 Short, 7928 lumens, 78 lumens per watt, with light more than 40' behind the pole.

Type 2 Short with an external shield, 6090 lumens, 60 lumens per watt, light reduced to 20' behind the pole.


Type 2 Medium mirror imbedded optics, 7523 lumens, 105 lumens per watt with light evenly dispersed 10' to 20' behind the pole for sidewalk illumination.

External shields can reduce luminaire efficiency by as much as 23%. precision optics maintain luminaire efficiency by re-directing the light evenly along the roadway.

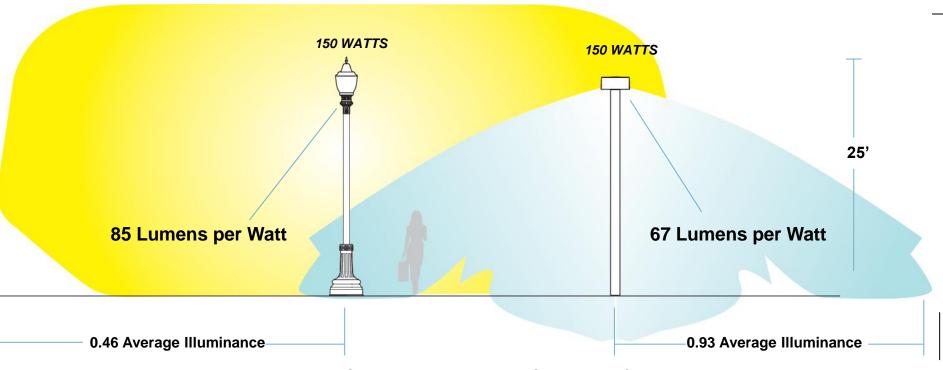
© 2018 Eaton. All rights reserved.


VERD Optics

Distribution Pattern Comparison

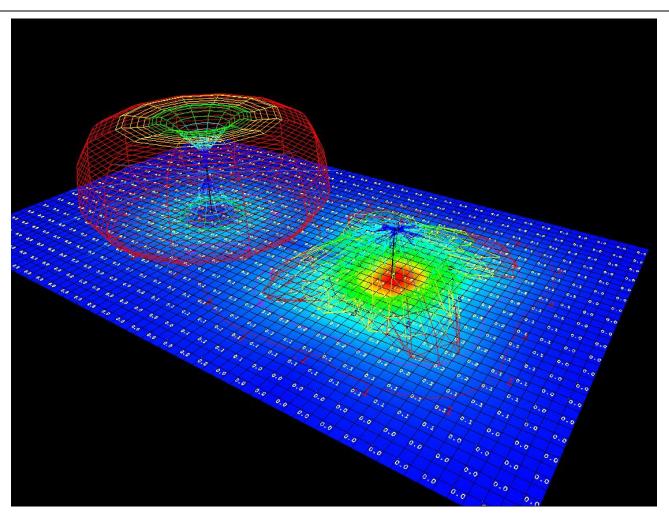
ARCH Optics

Distribution Pattern Comparison



External Shields

Why you should not specify by lumens per watt Same source, same ballast, different performance


Why the "lumens per watt method" of calculating lighting fixture performance alone does not equate to energy efficiency.

Although the luminaire on the left is 27% higher in fixture LPW, it produces less than half the average illumination on the ground

To give the same illumination as the lower LPW fixtures, over twice as many of the higher LPW fixtures would be needed, resulting in a net energy increase of 102%

Where is the light going?

Three dimension rendering of light distributions and relative foot-candles on ground High LWP post top on left, lower LPW shoebox on right

Luminaire Dirt Depreciation

Dirt, dust, dead bugs and water collect inside this HID luminaire lens in

Boston, MA

How much light is really passing through the lens?

luminaire dirt depreciation factor, LDD the multiplier to be used in lighting calculations to reduce the initial light level provided by clean, new luminaires to the light level that they will provide due to dirt collection on the luminaires at the time at which it is anticipated that cleaning procedures will be instituted.

HID | LED Equivalency

HID

OVX Type 3 distribution

250W HPS Lamp (300 ballast watts)

28,000 lumens

70% Total Downward Luminaire Efficiency

19,600 lumens

Street Side Lumens

(52.7%)

10,329 lumens

0.81 LLF

8,366 lumens

VS.

LED

XNV2 Type 3 distribution (new LED)

110W LED @ 1A

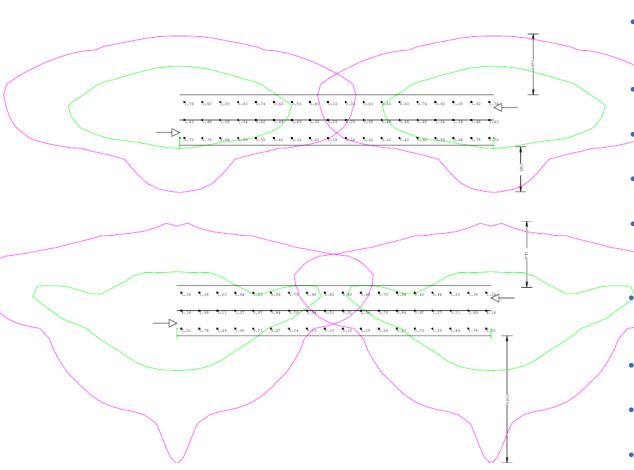
10,567 lumens

100% Total Downward Luminaire Efficiency

10,566 lumens

Street Side Lumens

(82%)


8,660 lumens

0.91 LLF 7,880 lumens

XNV2 type 2 700mA drive current vs OVH 150 watt HPS Type 3

28' roadway, 1' setback, 30' mounting height, 6' sweep arm, 175' spacing

Purple iso = .1 FC Green Iso = .5 FC

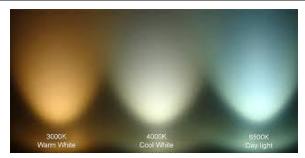
XNV2-AC-02-2-700

- 76 watts, 7,588 initial delivered lumens, 6,458 downward street side lumens
- .864 Light Loss Factor (60,000 hrs.)
- .74 average, .17 minimum, 1.77 maximum, 4.35 to 1 ave/min.
- Rear spill light 25', forward spill light 34'
- Max Lv Ratio .29 on R3 pavement

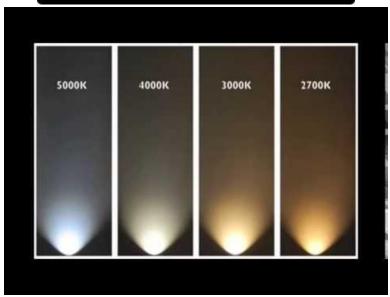
OVH15S2D

- 188 watts, 11,706 initial delivered lumens, 8,272 downward street side lumens
- .81 Light Loss Factor (12,000 hrs)
- 1.14 average, .10 minimum, 4.16 maximum, 11.40 to 1 ave/min.
- Rear spill light 41', forward spill light 31'
- Max Lv Ratio .40 on R3 pavement

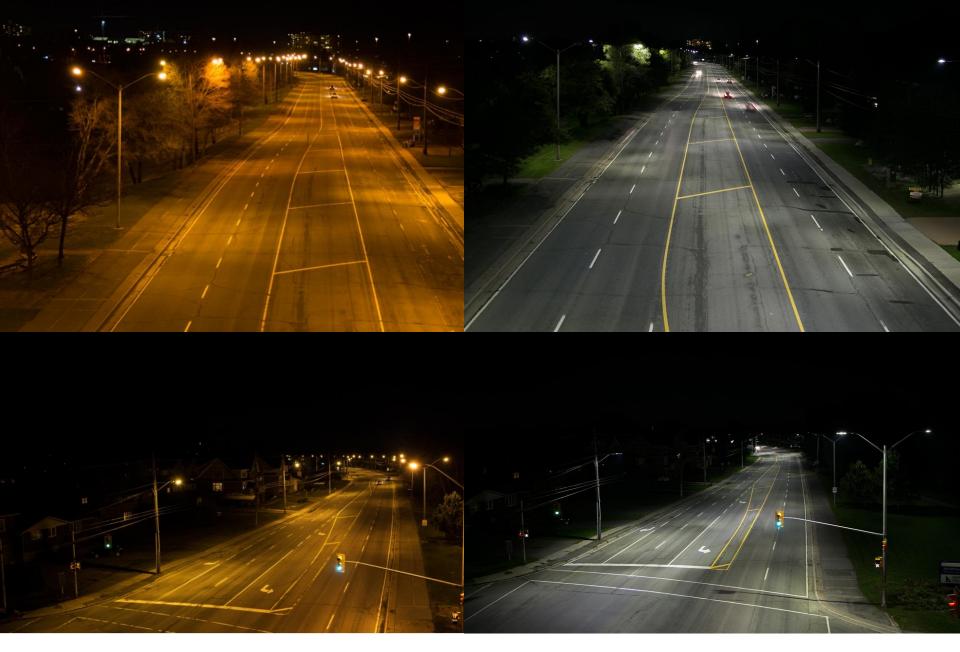
Twin and Triple 1000 watt MH (1085 x 3= 3255 watts)

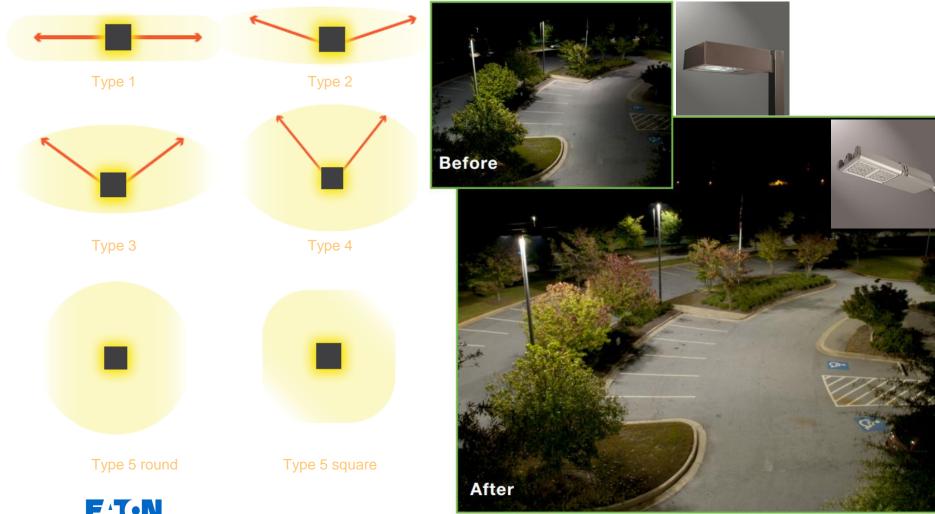



Twin 213 watt Navions (618 watts)



3000K vs 4000K Correlated Color Temperature Color Preference and Visibility





IESNA Distribution types

Same distributions for traditional technologies and LED

© 2018 Eaton. All rights reserved.

Source (Lamp) Versus Delivered Lumens

- Source= Lamp Lumens from the source.
- Example 100W HPS Lamp emits 9500
 Source Lumens

 Delivered= Lumens that are controlled and distributed from the luminaire. LED Fixtures publish Delivered Lumens

LED Replacement Product Methodology

HID

Typical Type 3 Distribution

250W HPS Lamp (300 ballast watts)

28,000 lumens

70% Total Downward Luminaire Efficiency

19,600 lumens

Street Side Lumens (52.7%)

10,329 lumens

10,329 X 0.81 LLF =

8,366 lumens

VS.

LED

LED Type 3 Distribution

155 watt LED

19,000 lumens

100% Total Downward

Luminaire Efficiency

19,000 lumens

Street Side Lumens (77.5%)

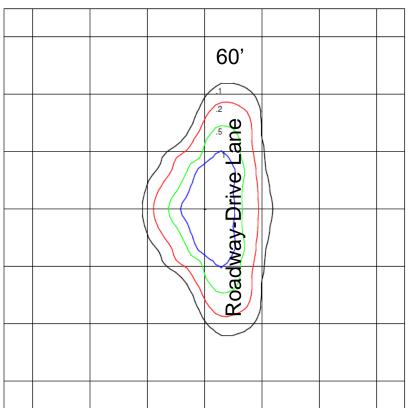
14,725 lumens

14,725 X 0.81 LLF =

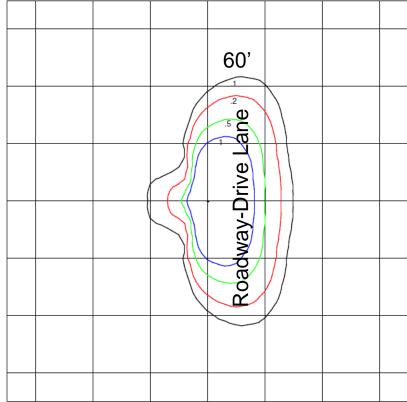
11,927 lumens

48% Less Energy and 30% More Maintained Street

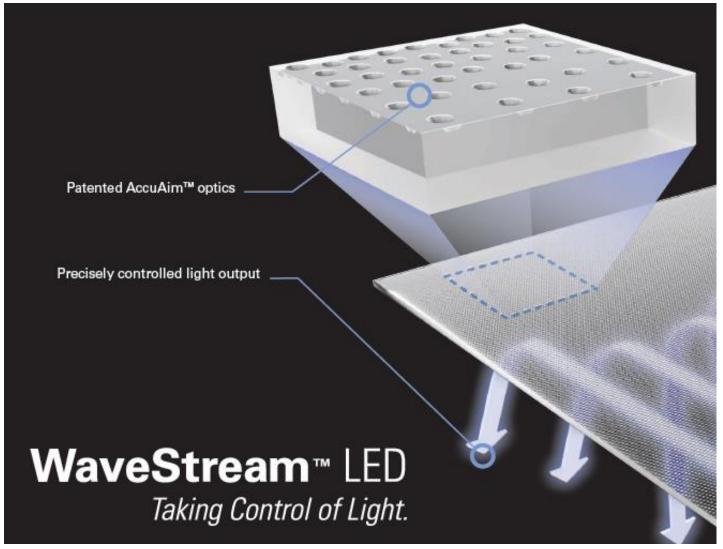
Side Lumens



250W HPS vs.140W LED VERD 19000 Lumens


Photometric Toolbox

GE LIGHTING SOLUTIONS www.gelightingsolutions.com M2RR255__GMS3 M-250R2 1; 250W HPS, CLEAR ED18, HORZ Horizontal Footcandles
Scale: 1 Inch = 60 Ft.
Light Loss Factor = 1.00
Lumens Per Lamp = 27500
Total Lamp Lumens = 27500
Mounting Height = 30.00 Ft
Maximum Calculated Value = 5.64 Fc
Arrangement: Single


COOPER Lighting

Photometric Toolbox

EATON - STREETWORKS (FORMER COOPER LIGHTING) VERD-G-C02H-D-U-T3 VERDEON-G ROADWAY AND AREA LUMINAIRE (2) 70 CRI. 4000K, 1370mA LEDS AND TYPE III OPTICS Horizontal Footcandles
Scale: 1 Inch = 50 Ft.
Light Loss Factor = 1.00
Lumens Per Lamp = N.A. (absolute photometry)
Luminaire Lumens = 19080
Mounting Height = 25.00 Ft
Maximum Calculated Value = 5.31 Fc
Arrangement: Single

WaveStream[™] optical technology blocks the line of sight of the LED light source from the observer while extracting the maximum amount of light on task.

Optical technology with unparalleled combination of visual comfort and performance.

How do we achieve our vision...

We create unique experiences

"To improve the quality of life and the environment through the use of power management technologies and services..."

Eaton is enhancing urban living with design and stunning illumination

We Conserve Energy

We Improve Safety

We Create Experiences

Ve Connect Communitie

Class 2 LED Driver

PHILIPS

UL Class 2

PHILIPS ADVANCE

- UL Class 2 rating represents compliance with standard UL1310
- UL Class 2 rating means output is considered safe to contact and no major safety protection is required at LED/luminaire level
- UL Class 2 has the following electrical restrictions:
 - Maximum output current: 5Adc
 - Maximum output voltage: 60Vdc (dry); 30Vdc (damp/wet)
 - Maximum output power: 100W
- Any LED Driver used for Signage applications must be listed in the UL Sign Components Manual
- As component of an LED system, an LED Driver is not listed but recognized by UL (Nus)

XITANIU M

Solid State Lighting North America, June 2009

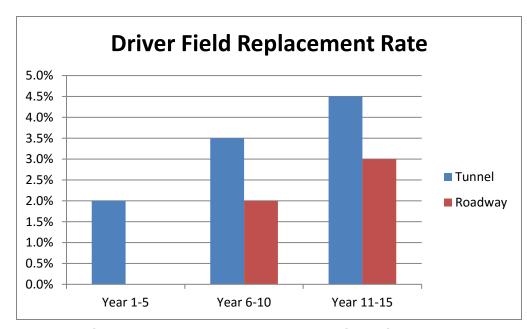
LED
luminaires
with Class
2 drivers
can use an
acrylic
lens.

Class 1 LED Driver

PHILIPS

UL Class 1

PHILIPS
ADVANCE

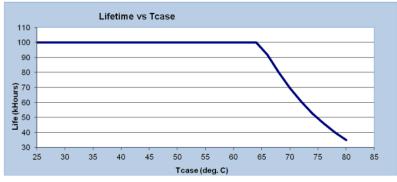

Class 1 LED luminaires will have a glass or polycarbonate lens

- LED Drivers with output outside the range required by UL1310 (Class 2) need to comply with standard UL1012
- Under this standard, LED Drivers are considered UL Class I devices
- An LED Driver with UL Class I rating means its output is considered "high voltage" and safety protection is required within the fixture
- Fluorescent and HID ballast fall under this category
- Also as a component of an LED system, an Class I LED Driver is not listed but recognized by UL (\(\subseteq \textbf{X} \) us)

Driver Replacement Rate

- Driver wearout data based on Detroit environmental conditions
 - Tunnel 24 hr/day; roadway 12 hr/day
- Years 1-5 only expect <0.5% additional random failures

PHILIPS


Electrical Specifications

LEDINTA1050C140DOM			
Brand Name	XITANIUM		
Description	XITANIUM 150W 1.05A 0-10V INT		
Input Voltage	120~277		
Input Frequency	50/60Hz		
RoHS	Yes		
Status	Active		

Failure Rate Info:

1. <0.01% per 1 kHr @<= Tcase 80 C

Lifetime vs. Tcase of Driver:

Revised 02/27/2012

PHILIPS LIGHTING ELECTRONICS N.A.

10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018
Tel: 800-322-2086 - Fax: 888-423-1882 - www.philips.com/advance
Customer Support/Technical Service: 800-372-3331 - OEM Support: 866-915-5886

Eaton has extensive test data to support field performance expectations

Cool running drivers last longer.

PHILIPS ADVANCE

LED-INTA-0024V-41-F-O				
Brand Name	XITANIUM			
Description	100W 24V 4.1A			
Input Voltage	120~277			
Input Frequency	50/60Hz			
RoHS	Yes			
Status	Active			

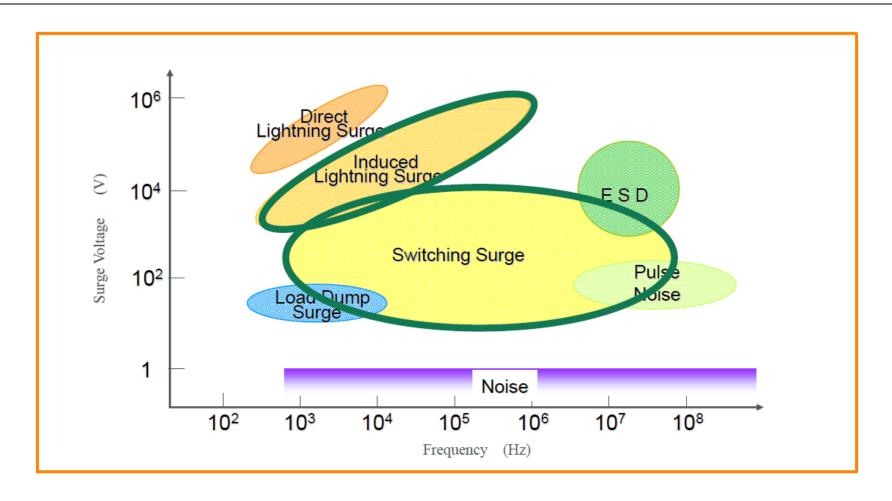
Installation & Application Notes:

Section I - Physical Characteristics

- 1.1 LED Driver shall be installed inside an electrical enclosure
- 1.2 Wiring inside electrical enclosure shall comply with 600V/105°C rating or higher.

Section II - Performance

- 2.1 LED Driver is UL Class 2 power unit as per UL1310. It is also listed in the UL Sign Accessory Manual (UL SAM).
- 2.2 LED Driver has Class A sound rating.
- 2.3 LED Driver has a minimum operating ambient temperature of -40°C.
- 2.4 LED Driver has a life expectancy of 50,000 hours at Tcase of \leq 80°C.
- 2.5 LED Driver has a life expectancy of 100,000 hours at Tcase of $\leq 70^{\circ}$ C.
- 2.6 LED Driver has a typical self rise of 30°C at maximum load in open air without heat sink.
- 2.7 LED Driver is certified by UL for use in a dry or damp location (Outdoor Type I).
- 2.8 LED Driver tolerates sustained open circuit and short circuit output conditions without damage.
- 2.9 LED Driver maximum allowable case temperature is 90°C see product label for measurement location.
- 2.10 LED Driver reduces output power to LEDs if maximum allowable case temperature is exceeded.
- 2.11 LED Driver has a failure rate of ≤ 0.01% per 1,000 hours.
- 2.12 LED Driver complies with FCC rules and regulations, as per Title 47 CFR Part 15 Non-Consumer (Class A).
- 2.13 LED Driver conforms to EN61558-1, EN 61558-2-17 and EN 60065.


Driver T case

temperature

will affect

longevity.

Surge Sources

Protection Levels

Updates to C136.2-2015: Tables 1 and 7-2

TABLE 7-2 $1.2/50\mu\text{S} - 8/20~\mu\text{S}~\text{COMBINATION}$ WAVE TEST SPECIFICATION

Parameter	Test Level / Configuration			
1.2/50 µS Open Circuit Voltage Peak	k Typical: 6 kV Enhanced: 10kV Extreme: 20kV			
8/20 µS Short Circuit Current Peak	Typical: 3 kA	Enhanced: 5kA	Extreme: 10kA	
Coupling Modes	L1 to PE, L2 to PE, L1 to L2, L1+L2 to PE			
Polarity and Phase Angle	Positive at 90° and Negative at 270°			
Consecutive Test Strikes	5 for each Coupling Mode and Polarity/Phase Angle combination			
Time Between Strikes	1 minute between consecutive strikes			
Total Number of Strikes	= 5 strikes x 4 coupling modes x 2 polarity/phase angles = 40 total strikes			

Note: L1 is typically "HOT", L2 is typically "NEUTRAL" and PE = Protective Earth.

Table 1
Recommended electrical transient immunity levels for common outdoor lighting applications

Lighting application	Electrical transient immunity level			
Lighting application	Typical	Enhanced	Extreme	
Building entrance, building exterior	X			
Parking garage, parking lot, tunnel	X	X		
Street, roadway, stadium, airport	X	X	X	

Table 1 provides guidance on the level to choose from Table 7-2 for various applications

Standard Cross Reference

Combination Wave Testing					
ANSI C82.77-5-2015 (L1 to PE, L2 to PE, L1 to L2, L1 & L2 to PE)	Category Name	C Low	C Medium	C High	
	Surge Level - 8x20µs	6kV / 3kA	10kV / 5kA	20kV / 10kA	
	# of Hits	40	40	40	
ANSI C136.2 – 2015 (L1 to PE, L2 to PE, L1 to L2, L1 & L2 to PE)	Category Name	Typical	Enhanced	Extreme	
	Surge Level - 8x20µs	6kV / 3kA	10kV / 5kA	20kV / 10kA	
	# of Hits	40	40	40	
IEEE C62.41.2* (* - Does not define # of strikes)	Category Name	C Low	-	C High	
	Surge Level - 8x20µs	6kV / 3kA	-	20kV / 10kA	
	# of Hits	*	-	*	

Surge Protection is Essential for Driver Life

UL1449 3rd Edition Safety Enhancements

- Safety standard
 - UL 1449 "UL Standard for Safety for Surge Protective Devices"
- UL 1449 3rd Edition is now an ANSI standard
 - Reviewed, voted on, and approved by a balanced group of technical advisors including individuals from manufacturers, end-users and other interested parties
 - Changes must be voted on by this technical advisory group
- Duty Cycle Testing
 - 15 impulses of the manufacturer selected nominal discharge current
 - To pass:
 - SPD can not create a shock or fire hazard
 - Nothing in the surge path can open at any time during or after the test
 - This test includes <u>all</u> internal or external supplementary protective devices or overcurrent devices such as fuses or circuit breakers
- Intermediate Current Test ("Slow Cook Test")
 - L-L voltage place on the L-N mode
 - Current is limited to 1000A, 500A, 100A, and published SCCR
 - Test run for 7 hours on each or until the until safely disconnects
 - Added in addition to the Low Current Test from 2nd Edition
 - 10 amps, 5 amps, 2.5 amps, 0.5 amps
 - · Test run for 7 hours on each or until the until safely disconnects

Make sure the SPD meets UL1449

Surge Protection Device (SPD)Options

Street Light Electrical System Protection

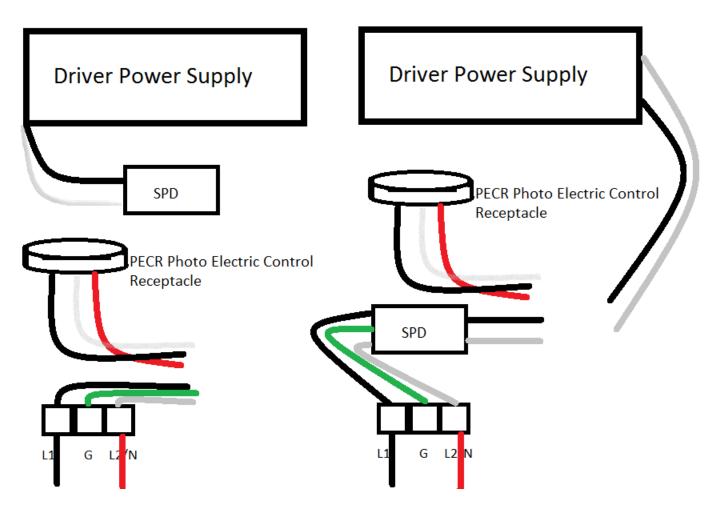
- LED drivers offer only 6kV/3kA surge protection. Due to this low level of protection roadway lighting product require a separate surge protection device for luminaire longevity.
- Series wired SPDs will cut the power shutting off the luminaire to protect all electrical components, parallel wired SPDs will allow the luminaire to continue to operate.
- Both SPD options are wired off the terminal block to protect all upstream components including the photo control and wireless control modules.
- 20kV options available with LED indicator light to show failure of the SPD Metal Oxide Varistors (MOVs) saving time to troubleshoot.

SPD Options

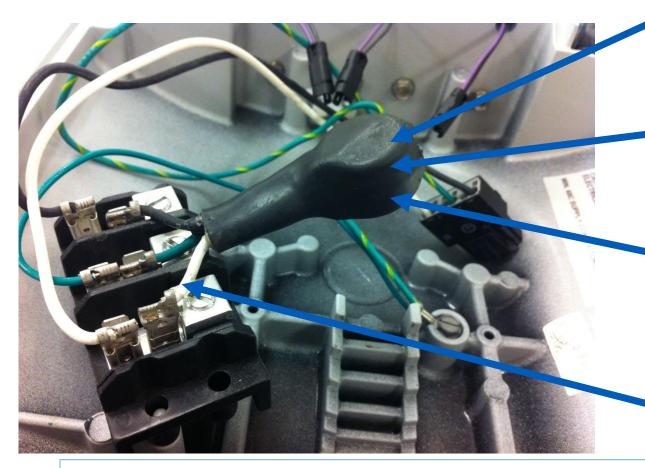
- 10kV/5kA Parallel 10MSP
- 20kV/10kA Parallel 20MSP
- 10kV/5kA Series 10K
- 20kV/10kA Series w/ or w/o LED indicator 20K

Example of Catastrophic Event

10K or 20K (Series) vs. 10MSP or 20MSP MSP (Parallel)



What's Your Strategy?



Surge Protection before Downstream Electronics (Controls and Drivers)

Surge Protector – What to Look For

Does not display a UL or CSA marking; non-compliance with Article 285.5

Does not describe short circuit current rating; non-compliance with Article 285.6

Does not incorporate fusing such that SPD becomes disconnected after MOV failure; non-compliance with Article 285.27

May not be 14AWG Wires; possible non-compliance with Article 285.26

Insufficient protection will reduce fixture life.

LED Fixtures on 480 Volt Power

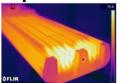
- As LED continues to penetrate the outdoor market space more old magnetic HID fixtures will be replaced by LED.
- Many of these HID fixtures are on older Electrical Service configurations that need special SPD consideration.

Know Your Circuit Type

Common Electrical Services and Loads	Single Phase Three Wire Line 1 120 V 240 V Neutral 120 V Line 2	Three Phase Four Wire Wye 120 V 208 V 208 V 120 V 208 V Phase B 120 V 208 V Phase C	Phase B	240 V 240 V 208 V Phase B (wild leg) Phase A 240 V 120 V Neutral	Three Phase Two Wire Corner-Grounded Delta Phase A 480 V 480 V Phase B Phase C
Typical Terms, Applications and Usages	Also known as an Edison system, split- phase or center tapped neutral, this is the most common residential service in North America	The most common building electric service in North America, in smaller buildings known as the 120/208 volt Wye and in larger buildings as the 277/480 volt Wye	be used for Magnetic	facilities for both three phase motor loads and some	Used to reduce wiring costs by using a service cable with only two insulated conductors rather than three insulated conductors. Prevalent in older factory and some DOT installations.
Grounded System	Yes	Yes	No	Yes	Yes
Compatible with Magnetic HID	Yes	Yes	Yes	Yes	Yes
Use with Electronic Ballast or Driver	Yes	Yes	Maybe	Maybe	Maybe
Use with Surge Module (SPD)	Yes	Yes	Special	Special	Special

LED Luminaire and Component Testing

DRIVER HOTSPOT


Reliability System Testing

- **Humidity**
- Salt Spray
- **Water IPX6**
- **Dust IP6X**
- **Vibration testing**
- **UV** testing
- Thermal testing on luminaires at -30°C (-30°F) degree 40°C(104°F) standard, -40°C to 50°C for certain models.
- Thermal testing on components from -40°C to 90°C
- Require UL accredited test laboratory

Temperature

ô

DOE approved Lighting Facts Test Laboratory partner

THERMOCOUPLE MEASUREMENTS

Norldwide

NO SAND

Ingress Protection (IP) Ratings

1st Digit of IP Rating	1st Digit Detailed Description	2nd Digit of IP Rating	2nd Digit Detailed Description
0	No Protection	0	No Protection
1	Protection against solid objects larger than 50mm	1	Protection against dripping water
2	Protection against solid objects larger than 12mm	2	Protection against dripping water if tilted up to 15°
3	Protection against solid objects larger than 2.5mm	3	Protection against spraying water
4	Protection against solid objects larger than 1.0mm	4	Protection against splashing water
5	Protection against ingress of most dust particles	5	Protection against jet(s) of water
6	Protection against ingress of all dust particles	6	Protection against heavy seas
		7	Protection against immersion for specific time under specific pressure
		8	Protection against continu- ous submersion in water

ANSI C136 Exterior Label

- C136.15 American National Standard for Roadway and Area Lighting Equipment – Luminaire Field Identification
 - · Marker shall have black letters on a white background
 - Arithmetically rounded to the nearest multiple of 10
 - Standard either 1" square or 3" square
 - Example

54 Watt Luminaire becomes "50"

55 Watt Luminaire becomes "60"

Lineman friendly features for quick and easy installation and maintenance

Tool-less Access

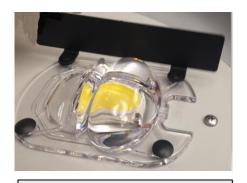
Stainless steel latches provide easy, tool-less access to the electrical compartment, even with lineman's gloves.

Hinged, Removable Power Door

Driver is mounted to door. Integral hinge allows door to hang securely while making wire connections and can be easily removed without the use of tools.

Driver tray quick disconnect

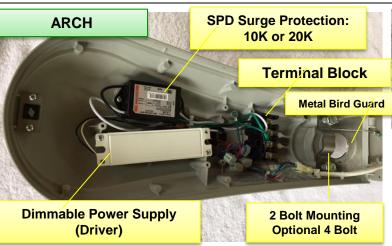
VERD-M electrical chamber with Crouse Hinds 20kV SPD with LED indicator light



Now with WAGO connectors for quick component replacement

Field installed house side light shield

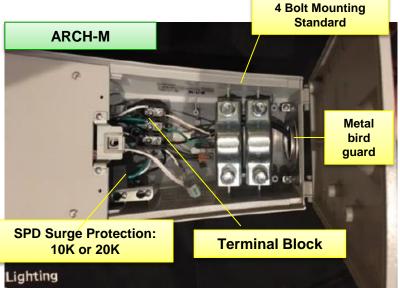
HS-VERD

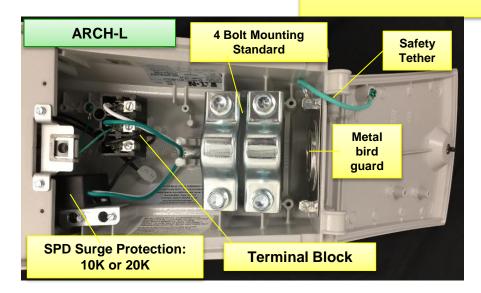


Field installed side or front vertical light shield.

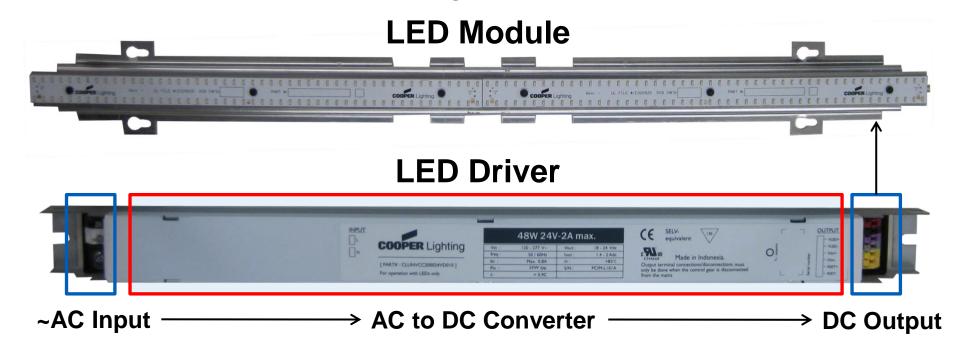
VGS-F/B – Front or Back VGS-SIDE – Side only

Mechanical Features and Component Replacement


WAGO electrical connectors to driver and surge module for easy component replacement



- HS-ARCH-16 House side shield for 16 LED optic
- HS-ARCH-24 House side shield for 24 LED optic



What is an LED Driver?

An LED driver consists of one or more electronic components to limit voltage/current applied to the LED. Generally, alternating current (AC) voltage is converted into direct current (DC) which drives the LEDs based on design.

LED Driver or Power Supply

- Driver specification sheet shows 100,000 Lifetime when operating < 75 °C
 - Driver Max Temp 90°C
 - Driver Warranty 85°C
- Driver is standard with 6kV Transient Protection ANSI C62.41 Category B

Class 2 LED Driver

PHILIPS

UL Class 2

PHILIPS

ADVANCE

- UL Class 2 rating represents compliance with standard UL1310
- UL Class 2 rating means output is considered safe to contact and no major safety protection is required at LED/luminaire level
- UL Class 2 has the following electrical restrictions:
 - Maximum output current: 5Adc
 - Maximum output voltage: 60Vdc (dry); 30Vdc (damp/wet)
 - Maximum output power: 100W
- Any LED Driver used for Signage applications must be listed in the UL Sign Components Manual

XITANIU M

Solid State Lighting North America, June 2009

LED
luminaires
with Class
2 drivers
can use an
acrylic
lens.

Class 1 LED Driver

PHILIPS

UL Class 1

PHILIPS
ADVANCE

Class 1 LED luminaires will have a glass or polycarbonate lens

- LED Drivers with output outside the range required by UL1310 (Class 2) need to comply with standard UL1012
- Under this standard, LED Drivers are considered UL Class I devices
- An LED Driver with UL Class I rating means its output is considered "high voltage" and safety protection is required within the fixture
- Fluorescent and HID ballast fall under this category
- Also as a component of an LED system, an Class I LED Driver is not listed but recognized by UL (Nus)

Example of Test Results of In Situation Tc

Eaton Archeon Series Cobrahead

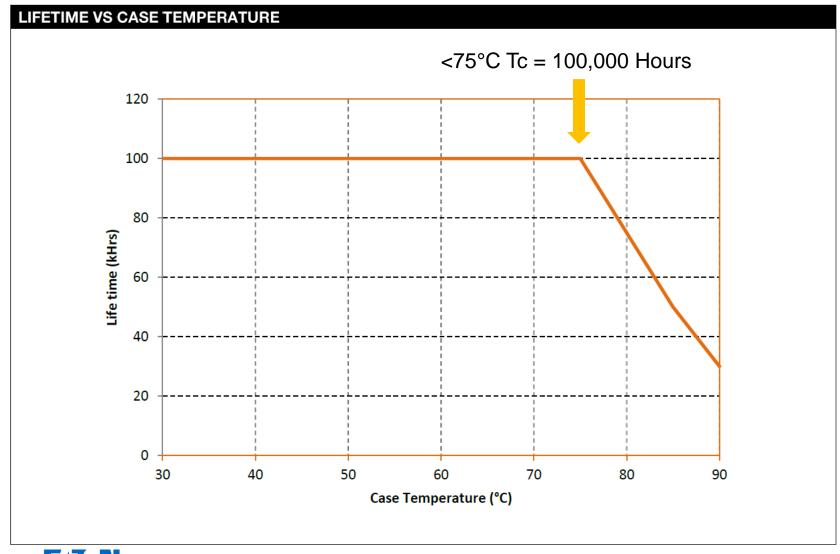
Driver Tc Measurement of 75 C

RESULTS

LED LUMINAIRE:

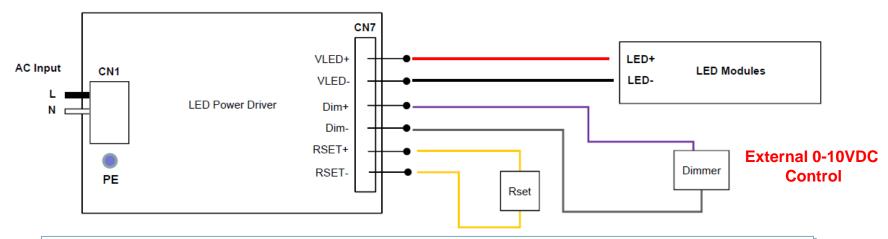
The input current and voltage was measured and recorded in the table below both at the beginning and end of the temperature test:

Beginning Input Voltage (V):	119.90
Beginning Input Current (A):	0.71
Beginning Input Wattage (W):	85.50
Ending Input Voltage (V):	120.20
Ending Input Current (A):	0.69
Ending Input Wattage (W):	82.60
Test Start Date:	2017-03-07
Test Start Time:	8:13:24 AM
Test Stop Date:	2017-03-07
Test Stop time:	3:43:27 PM


The ending current measurement [was] [was not] within 10 percent of the beginning current measurement.

LAB TECH: Contact engineer if there is a 10% or greater difference in the current measurements.

	Housing Cat. No:	ARCHEON	Trim		
	Housing manufacturer:	EATON		Limit	
			Temp. °C		
	Th	ermocouple Location			
1	DRIVER Tc		75	90	
2	DRIVER .5 IN FROM LINE IN		78	90	
3	DRIVER .5 IN FROM LINE OUT		83	90	
4	LM80 LED TC point CENTER DIC	DE NEAR DRIVER	94	105	
5	LM80 LED TC point END DIODE	LM80 LED TC point END DIODE NEAR DRIVER			
6	PRINTED WIRING BOARD NEAR	92	105		
7	VID CASE	75	85		
8	FIXTURE AMBIENT NEAR SPD	68	85		
9	connector in driver compartme	nt	74	90	
10					
11					
12					
13					
14					
15					
16					
17					


Lifetime vs Case Temperature

Dimming

Similar to other light sources, LEDs are dimmed by reducing the current. The two most common methods of dimming are *line voltage* and *0-10VDC*. The wallbox dimmers are the same for LED as it is for incandescent or fluorescent.

Typical Wiring for 0-10V Dimming Driver

LEDs are capable to be dimmed to very low levels, <1%

Dimming

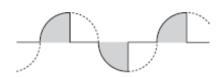
Line Voltage

Line voltage dimming involves modifying the AC voltage waveform at the input to the LED driver. Leading edge type is the most common type of dimmer available in the world.

Standard phase control or "leading edge."

Inconsistent dimming

Low cost, availability


Main Application:

Disadvantages:

Residential

Advantages:

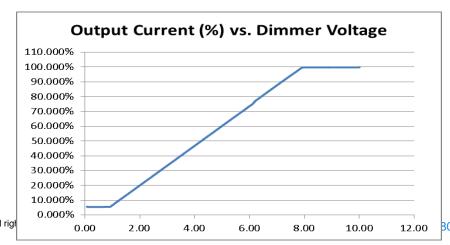
Reverse phase control or "tralling edge."

0-10VDC

Requires a reference voltage for operation, hence the name 0-10VDC. A special dimmer which can either source or sink current interfaces with the driver. Purple (+) and Gray (-) wires.

Advantages:

Consistent dimming, lower levels


Disadvantages:

Higher cost, limited mounting distance

Main Application:

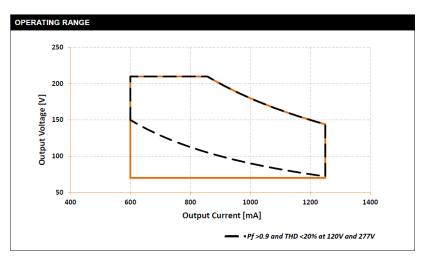
Powering Rusiness Worldwide

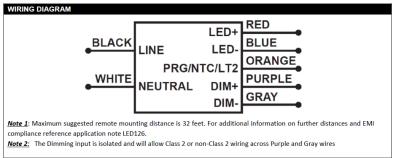
Commercial

© 2018 Eaton. All right

Driver Features - DALI

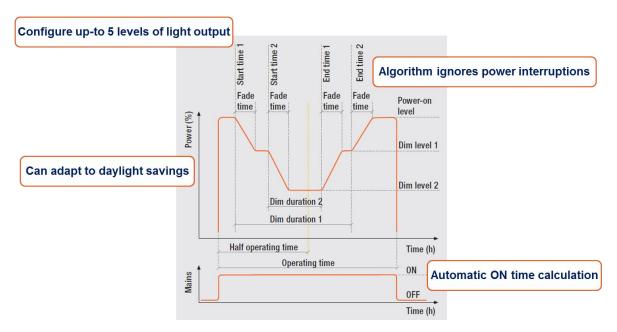
Digital Addressable Lighting Interface (**DALI**) is a trademark for network-based systems that control <u>lighting</u> in <u>building automation</u>. The underlying technology was established by a consortium of lighting equipment manufacturers as a successor for <u>0-10 V lighting control</u> systems, and as an <u>open standard</u> alternative to <u>Digital Signal Interface</u> (DSI), on which it is based.

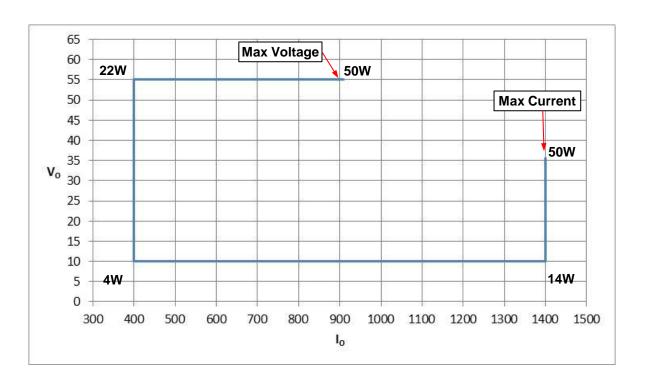

Offers:

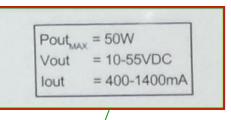

- Dimming
- Data storage used in some NLC systems for self commissioning
- Data bus communications

Driver Features - Programming

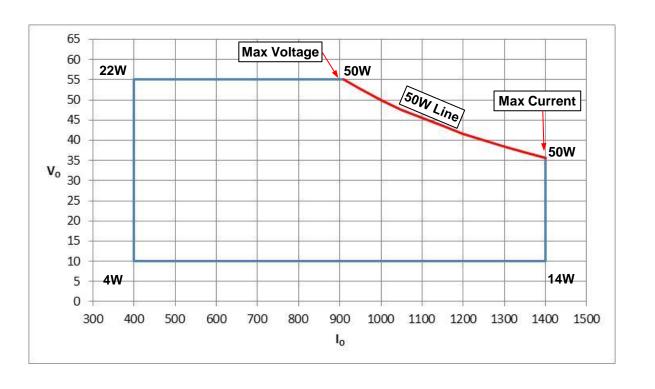
Output	
Output Current (mA)	600-1250mA 1mA resolution
	(programmable)
Output Voltage (VDC)	70-210VDC
Output Ripple Current	<30% @ 1250mA
Max. Output power (W)	180W (model dependent)
LED Power-up time	< 0.5sec
Load Regulation	<5%
Line Regulation	<5%
Over voltage protection	Yes, non- latching
Over load protection	Power fold back @185W
Output short-circuit protection	Yes, non- latching
Dimming	
Dimming Control	0 – 10V (Isolated)* AstroDIM
Dimming Range	10-100% (50mA min)
Dimming Type	Analog
Source/Sink Current	1mA

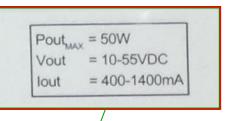

With programming tool this driver can be programmed from 600mA to 1250mA

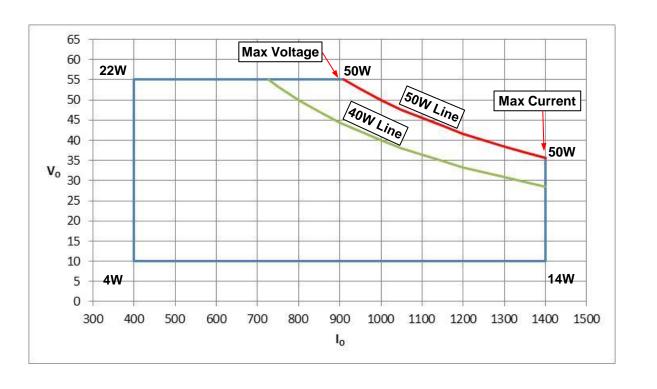

Driver Features – CLO and AHD

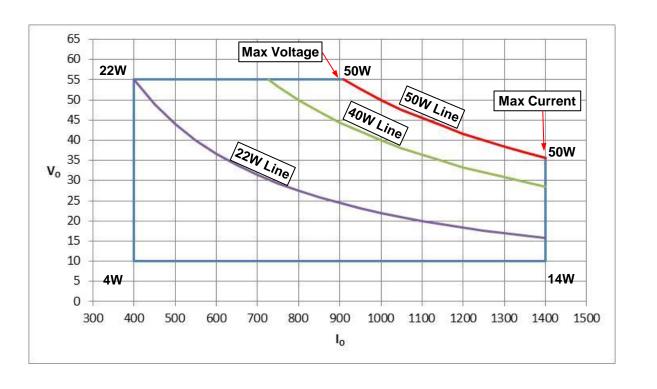

Constant Lumen Output (CLO) – driver can be programmed to increase current over time to compensate for lumen depreciation

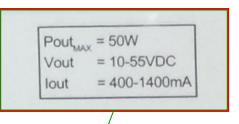
After Hours Dimming:

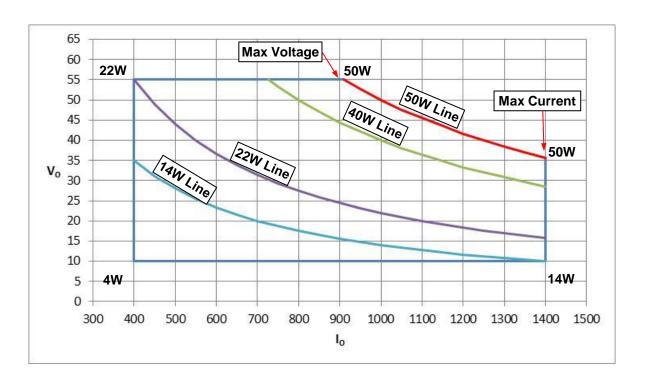


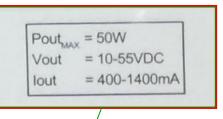








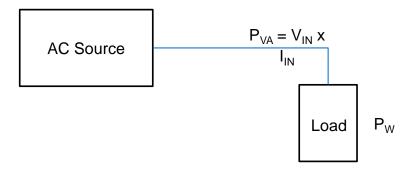




LED Driver – Power Factor, Basic Definition

LED Driver – Power Factor, Basic Definition

$$PF = \frac{P_W}{P_{VA}} = \frac{Real\ Power\ (W)}{I_{RMS}\ .V_{RMS}\ (VA)}$$



LED Driver - Power Factor, Basic Definition

$$PF = \frac{P_W}{P_{VA}} = \frac{Real\ Power\ (W)}{I_{RMS}\ .V_{RMS}\ (VA)}$$

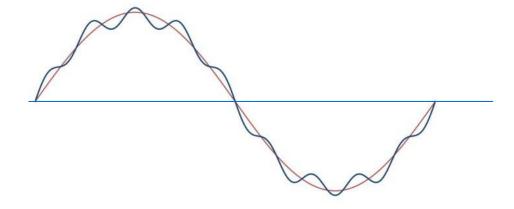
P_W is the actual power in watts that is dissipated by load

P_{VA} is the product of the measured input AC voltage and current to the load

Minimum Power Factor requirement

Residential: 0.7

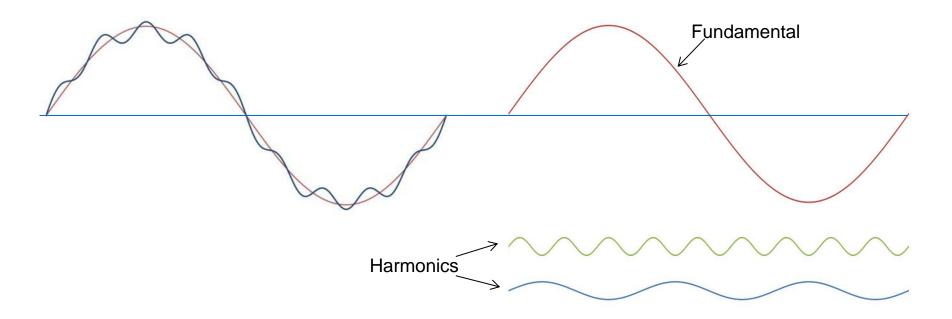
Commercial: 0.9



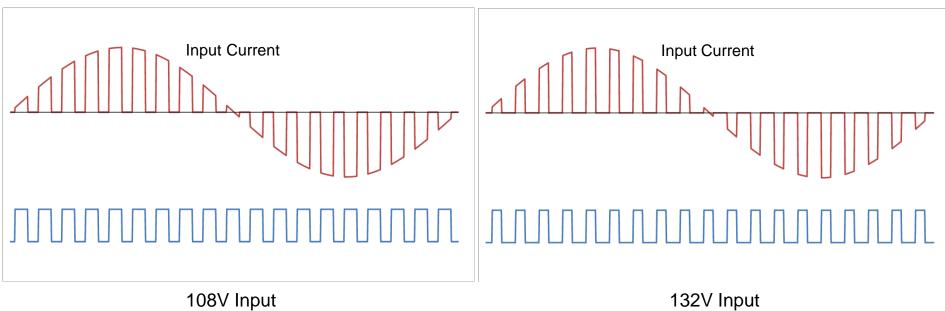
Definition: Distortion is a measure of the deviation from a pure sine wave.

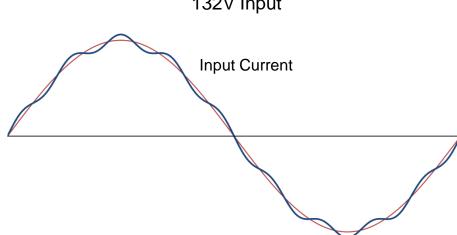
Deviation from a pure sine wave happens when Harmonics are introduced

Harmonics are higher frequency sine wave components of the fundamental 60 Hz



Definition: Distortion is a measure of the deviation from a pure sine wave.


Deviation from a pure sine wave happens when Harmonics are introduced


Harmonics are higher frequency sine wave components of the fundamental 60 Hz

$$THD(\%) = \frac{\sqrt{sum\ of\ all\ squared\ harmonics}}{fundamental} \times 100 = \frac{\sqrt{\sum {I_i}^2}}{I} \times 100$$

LED Driver – Efficiency


The ratio of output Power to Input power at full load.

$$Efficiency (\%) = \frac{Output \ Power}{Input \ Power} \times 100$$

An isolated (class 2) Flyback Converter can be as high as 90% efficient

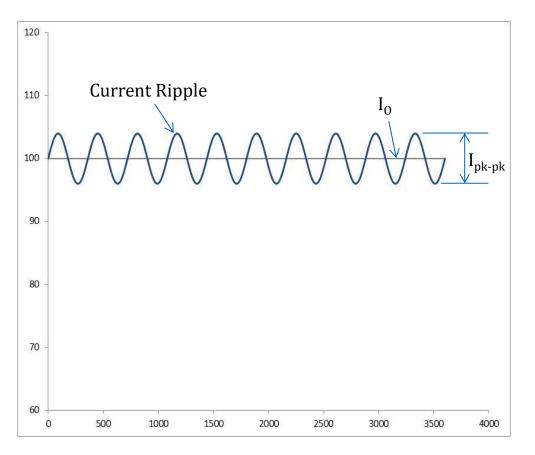
A driver that is less than 80% efficient is considered inferior

Efficiency is a trade off between cost, performance, availability, thermal limit and reliability

LED Driver – Regulation

Regulation is a measure of how well a driver output stays on target as conditions change

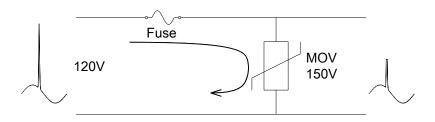
Regulation (%) =
$$\frac{Change\ in\ Output}{Target\ Output} \times 100 = \frac{I_{Max} - I_{Min}}{I} \times 100$$


The output may change due to Line voltage, load, temperature or frequency

Regulation less than 5% is considered good

LED Driver – Output Ripple Current

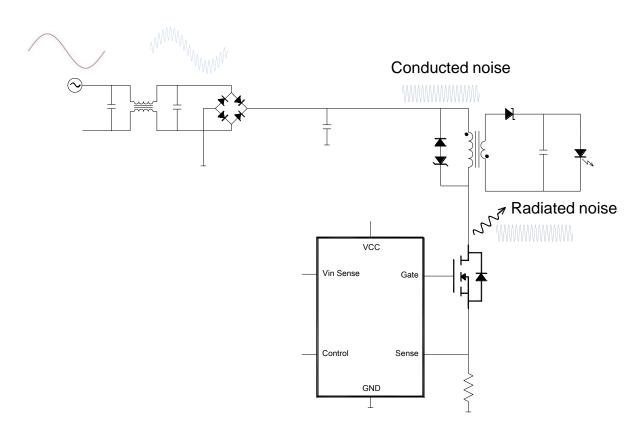
Ripple is a measure of the quality of the output



$$Ripple(\%) = \frac{Maximum\ swing\ of\ output}{Target\ Output} \times 100 = \frac{I_{pk-pk}}{I_O} \times 100$$

LED Driver – Surge

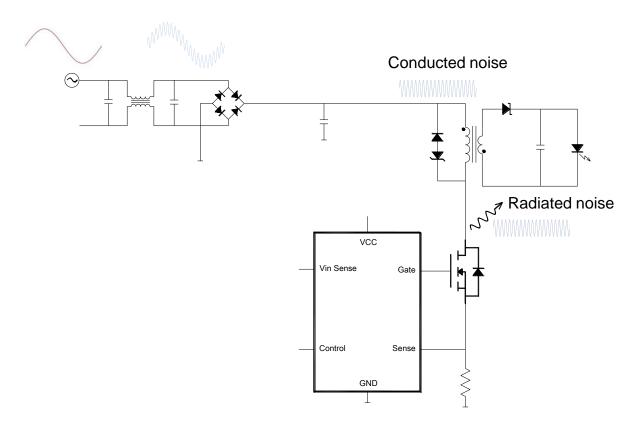
- Voltage Surge is a brief increase in voltage.
- Lightning Strikes are the main cause of voltage surge
- Surge voltage can reach several thousand volts



- May result in a high inrush current from hundreds to several thousand Amps
- Surge Suppressors (MOV) are used to clamp the surge voltage to a safe level

LED Driver - EMI

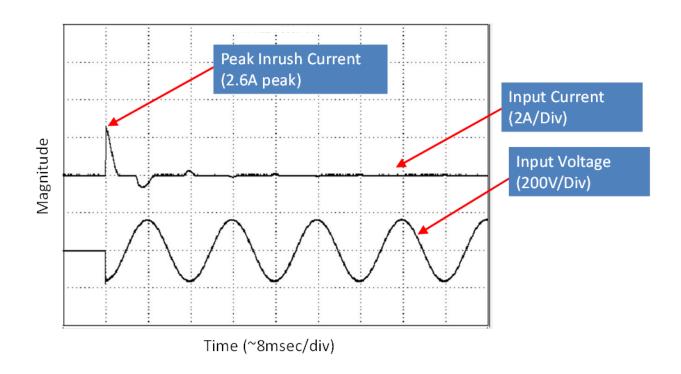
High Frequency Switching Current is radiated and conducted to the outside world causing radio interference.



LED Driver - EMI

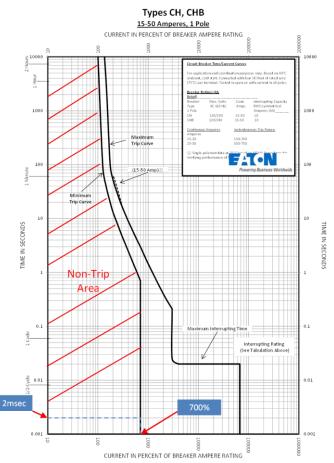
High Frequency Switching Current is radiated and conducted to the outside world causing radio interference.

An EMI filter is used to decouple the high frequency switching current from line FCC Regulates Radio Interference


Inrush Current of LED Driver

- What is it? Current need to charge front end of driver (capacitors)
- It's a known quantity:

ELECTRICAL SPECIFICATIONS							
Input							
Input Voltage (VAC) 120V-277V (+/- 10%)							
Frequency Range (Hz) 50 – 60 Hz (+/- 10%)							
120V 277V							
Input Current (A)	1.7	0.75					
THD @ Full load	<15%	<20%					
Power Factor @ Full load	>0.95	>0.95					
Efficiency @ Full load	≥90%						
Inrush Current (A _{pk}) 44A, 190 μs 131A,190μs							


What does Inrush Current look like?

Inrush Current of LED Driver

 What to do? Add up the inrush currents on the circuit and make sure your circuit breaker can handle it

Max Input Power Rating: 60W (or 0.5A average steady-state per luminaire at 120V input)

Inrush Current: 2.6A peak for 2msec (per Figure 1)

The designer wants to know how many luminaires can be placed on the 15A breaker and not exceed 12A while at the same time, preventing false tripping due to inrush current. Knowing that each luminaire draws 0.5A you can calculate 24 luminaires will draw 12A steady-state current. But, will there be an issue with inrush current? To investigate let's use the same Eaton CH breaker shown in Figure 3. The duration of the inrush current is 2msec. The minimum breaker trip curve is at 700% of rated breaker current or 105A (15A x 700%). 24 luminaire each with 2.6A peak of inrush current is 62.4A. Therefore the design will work as expected without any nuisance tripping due to inrush!

Archeon ARCH S Series Roadway

Streetworks

POWER AND LUMENS (AF16 LIGHT ENGINE) AF16-20 AF16-30 AF16-40 AF16-50 AF16-60 Ing Ing Ing

ower (W	fetts)	24	32	42	53	63
lattage Label		20	30	40	50	60
put Current @ 120V (A)		0.202	0.266	0.346 0.446		0.529
put Cun	rent @ 277V (A)	0.098	0.124	0.158	0.210	0.241
put Cun	rent @ 347V(A)	-	0.101	0.128	0.159	0.187
put Cun	rent @ 480V (A)	-	0.074	0.094	0.126	0.145
ptics						
	4000K/5000K Lumens	2,996	3,803	4,784	6,010	6,745

Optics						
	4000K/5000K Lumens	2,996	3,803	4,784	6,010	6,745
	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G2
T2R	3000K Lumens	2,652	3,366	4,235	5,320	5,971
	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G1
	4000K/5000K Lumens	2,982	3,785	4,762	5,982	6,713
T3	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2
13	3000K Lumens	2,640	3,350	4,215	5,295	5,942
	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2
	4000K/5000K Lumens	2,972	3,773	4,746	5,962	6,691
T4W	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2
	3000K Lumens	2,631	3,340	4,201	5,278	5,923
	Bug Rating	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2	B1-U0-G2
	4000K/5000K Lumens	3,037	3,855	4,850	6,092	6,837

B3-U0-G1 B3-U0-G1

B2-U0-G1 B2-U0-G1 B3-U0-G1 B3-U0-G2

3,412

B3-U0-G2 B3-U0-G2

6,052

5,393

LUMEN MAINTENANCE

Model	Ambient Temperature	TM-21 Lumen Maintenance (60,000 hours)	Theoretical L70 (Hours)	
AF16 (20-50W) AF24 (20-70W)	Up to 50°C	>95%	416,000	
AF16 (60W) AF24 (80W)	Up to 50°C	>90%	205,000	
AF24	Up to 40°C	>90%	205.000	

ARCH ARCHEON SMALL

LUMEN MULTIPLIER

Ambient Temperature	Lumen Multiplier
O*C	1.02
10°C	1.01
25°C	1.00
40°C	0.99
50°C	0.97

The Archeon™ Small LED roadway luminaire delivers all the performance benefits of the latest Eaton LED platforms and technologies with a modern, yet familiar cobrahead form factor. This discrete LED solution with the patented, high-efficiency AccuLED Optics™ system, provides uniform and energy conscious illumination for municipal streets and highways. Our customer focused features include single latch tool-less entry, industry leading surge protection options and superior lumen maintenance and performance, all in an economical design. Available in 14 standard lumen packages per optic making it the ideal LED replacement for any application of 50W to 150W HPS cobraheads.

SPECIFICATION FEATURES

Construction

Heavy-duty die-cast aluminum housing and door. Tool-less entry, hinged removable door for easy maintenance, 3G vibration rated.

Optics

Choice of four patented, highefficiency AccuLED Optics Available in Type IIR, III, IV wide and V square wide the optics are precisely designed to shape the distribution maximizing efficiency and application spacing. Offered standard in 4000K (+/- 275K) CCT and minimum 70 CRI. Optional 3000K, 5000K CCT. For the ultimate level of spill light control an optional house side shield accessory is available and can be field or factory installed. The house side shield is designed to seamlessly integrate with the T2R T3, and T4W optics. Optics are IP66 enclosure rated.

Electrical 120-277V 50/60Hz. 347V 60Hz or

480V 60Hz operation. Standard 0-10V dimming and 10kV/10kA common- and differential- mode surge protection available. Thermal management transfers heat away from the LED source for optimal efficiency, light output and lumen maintenance. Ambient operating temperature from -40°C to 40°C: 50°C HA, high ambient, capability available Standard with threeposition tunnel type compression terminal block. Greater than 90% lumen maintenance expected at 60,000 hours.

Mounting
Two-bolt/one-bracket slipfitter with cast-in pipe stop and 2.5° leveling steps. Fixed-in-place bird guard seals around 1-1/4" to 2" (1-5/8" to 2-3/8" O.D.) mounting arms Optional 15" pole mount arm

available with round pole adapter and mounting hardware included

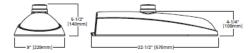
Finish

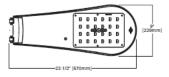
Project

Housing and cast parts finished in five-stage super TGIC polyester powder coat paint, 2.5 mil nominal thickness for superior protection against fade and wear. Consult your lighting representative at Eaton for a complete selection of standard colors.

Warranty

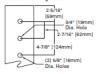
Five-year warranty, ten-year optional.




ARCH ARCHEON **SMALL**

LED

ROADWAY LUMINAIRE


DIMENSIONS

OPTIONAL ARM

TYPE -M- - Drilling Pattern

CERTIFICATION DATA UL and cUL Wet Location Listed

3G Vibration Rated ISO anni

ENERGY DATA Electronic LED Driver

<20% Total Harmonic Distortion 120-277V 50/60Hz 40°C Minimum Temperature Rating +40°C Ambient Temperature Rating

Effective Projected Area (Sq. Ft.): 0.5

TD521019EN

SHIPPING DATA Approximate Net Weight: 12 lbs. (5.4 kgs.)

POWER AND LUMENS (AF24 LIGHT ENGINE)

B2-U0-G1

Bug Rating

3000K Lumens

5WQ

Light Er	ngine - AF24	AF24-20	AF24-30	AF24-40	AF24-50	AF24-60	AF24-70	AF24-80	AF24-90	AF24-100
Power (Watts)		21	31	40	54	64	74	83	94	96
Wattage	Label	20	30	40	50	60	70	80	90	100
Input Co	rrent @ 120V (A)	0.179	0.257	0.338	0.450	0.534	0.619	0.695	0.783	0.798
Input Co	ırrent @ 277V (A)	-	0.122	0.155	0.212	0.244	0.279	0.312	0.347	0.354
Input Co	rrent @ 347V(A)	-	0.100	0.125	0.161	0.187	0.217	0.244	0.275	0.280
Input Co	rrent @ 480V (A)	-	0.073	0.094	0.127	0.145	0.165	0.184	0.205	0.209
Optics										
	4000K/5000K Lumens	2,859	4,002	5,164	6,658	7,644	8,522	9,209	9,870	9,972
T2R	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2	B1-U0-G2	B1-U0-G2	B1-U0-G2
IZK	3000K Lumens	2,531	3,543	4,571	5,894	6,766	7,544	8,152	8,737	8,827
	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2	B1-U0-G2	B1-U0-G2
	4000K/5000K Lumens	2,843	3,980	5,135	6,621	7,602	8,475	9,158	9,816	9,917
Та	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2	B2-U0-G2	B2-U0-G2	B2-U0-G2	B2-U0-G2
13	3000K Lumens	2,517	3,523	4,548	5,861	6,729	7,502	8,107	8,689	8,779
	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2	B1-U0-G2	B2-U0-G2	B2-U0-G2
	4000K/5000K Lumens	2,825	3,955	5,102	6,580	7,554	8,421	9,100	9,754	9,855
T4W	Bug Rating	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2	B2-U0-G2	B2-U0-G3	B2-U0-G3	B2-U0-G3	B2-U0-G3
14W	3000K Lumens	2,501	3,501	4,516	5,825	6,687	7,454	8,055	8,634	8,724
	Bug Rating	B1-U0-G1	B1-U0-G1	B1-U0-G2	B1-U0-G2	B1-U0-G2	B2-U0-G2	B2-U0-G2	B2-U0-G3	B2-U0-G3
	4000K/5000K Lumens	2,905	4,067	5,247	6,766	7,768	8,660	9,358	10,030	10,134
sWQ	Bug Rating	B2-U0-G1	B3-U0-G1	B3-U0-G1	B3-U0-G2	B3-U0-G2	B3-U0-G2	B3-U0-G2	B4-U0-G2	B4-U0-G2
swa	3000K Lumens	2,572	3,600	4,645	5,989	6,876	7,666	8,284	8,879	8,971
	Bug Rating	B2-U0-G1	B3-U0-G1	B3-U0-G1	B3-U0-G2	B3-U0-G2	B4-U0-G2	B4-U0-G2	B4-U0-G2	B4-U0-G2

THI

HID is still available! Eaton Streetworks 2018 HID Portfolio Summary

RMA

HPS (50.70.100.150.200) PSMH (70,100W)

Vanguard

HPS (70,100,150,200,250) PSMH (70,100,150,250,320,350,400W) Probe Start (175,250,400W)

OVX

HPS(50,70,100,150,200,250,400) PSMH (70,100,150,175,200,250,400W) Probe Start 175.250.400)

OVZ

HPS (50,70,100,150,200,250) PSMH (70,100,150,175,250W) Probe Start (175,250W)

OVH

HPS(50,70,100,150,200,250W) PSMH (70,100,150,175,250W) Probe Start (175,250W)

OVF

HPS(50,70,100,150,200,250) PSMH (150,250,320,350,400W) Probe Start (250,400W)

OVY

HPS (150,200,250,400) PSMH (150,250,,320,350,400W) Probe Start (250,400W)

Galleria Square

HPS (100,150,250,400,1000W) PSMH (150.175.250.320.350.400.750.1000W) PSMH (100.150.175.250.320.350.400W) Probe Start (175,250,400,1000W)

Tribute Site

HPS(100,150,200,250,400W) Probe Start (175,250,400W)

Traditionaire

HPS(50,70,100,150,175,200,250W) PSMH (70.100.150.175.250W) Probe Start (175,250W)

Lexington Series (LXT LXF LXD)

HPS (50,70,100,150W) PSMH (70.100.150.175W) Probe Start: (175W)

Generation Series

HPS (50,70,100,150,250,320W) All PSMH (70.100.150.250.320W) Probe Start (175,250,400W)

Acorn

HPS (50,70,100,150,200,250W) PSMH (70.100.150.175.250W) Probe Start (175,250W)

Eagle

HPS (1000W) PSMH (1000W) Probe Start (1000,1500W)

HPS (150,200,250,400,1000W) PSMH (150,250,320,350,400,750,1000W) Probe Start (250,400,1000W)

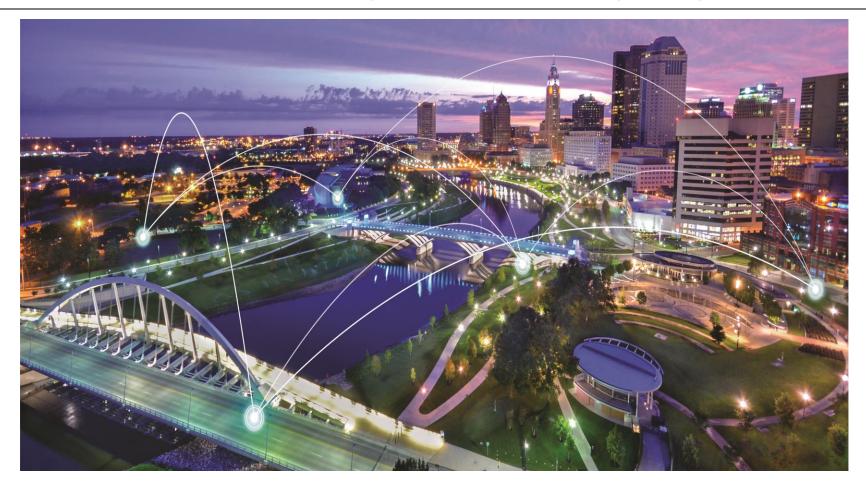
HPS (100,150,200,250,400W) PSMH (100,150,175,250,320,350,400W) Probe Start (175,250,400W)

HMX

HPS (400,750,1000W) PSMH (400,750,1000W) Probe Start MH (400,750,1000W)

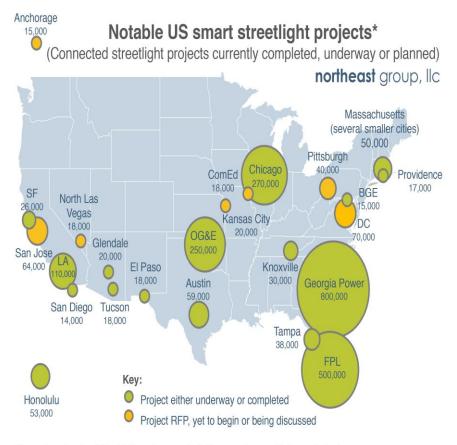
Technology Trends in LED

- IOT
- Controls
- Cameras/Sensors


The Internet of Things - What

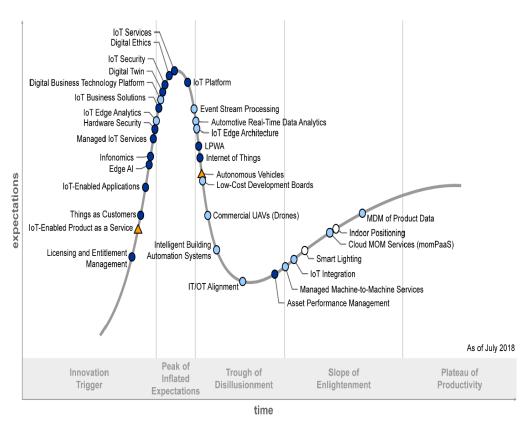
- The Internet of Things(IoT) is the network of
- physical devices, vehicles, home appliances, and
 - other items embedded with electronics, software,
 - sensors, actuators, and connectivity which enables
- These objects to connect and exchange data

Source: Wikipedia



The Internet of Things - Outdoor Lighting

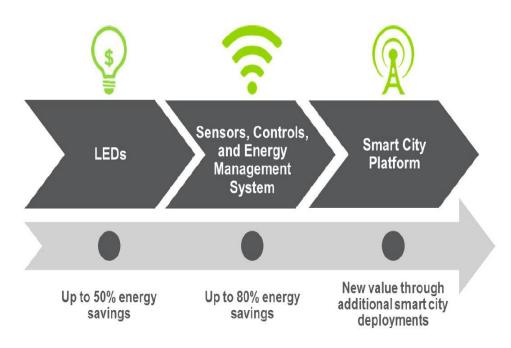
The Internet of Things - Where


*Non-exhaustive: in addition to these larger projects, there are dozens of other projects at smaller cities and municipalities (typically under 10,000 streetlights each)

Source: Northeast Group

The Internet of Things - When

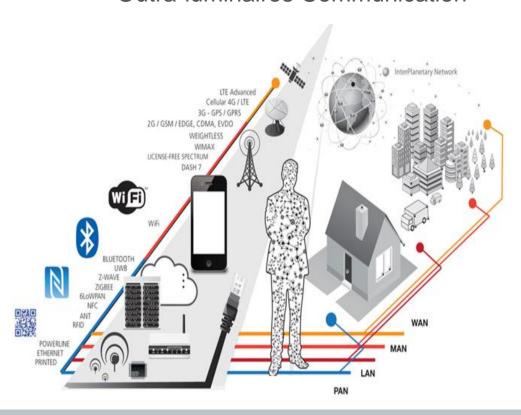
Hype Cycle for the Internet of Things



Source: Gartner Hype Cycle for emerging technologies, Published August 2018

The Internet of Things - What

From LEDs to Networked Controls and Smart City Platforms

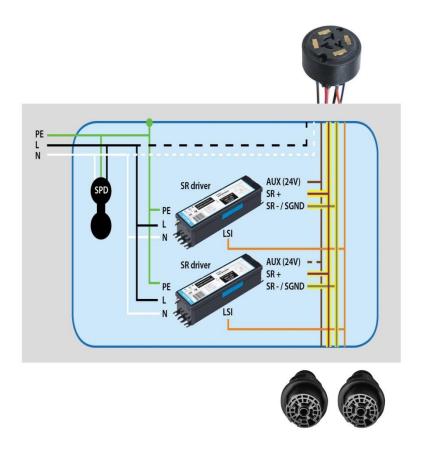


Source: Navigant Research Leaderboard : Smart Street

Lighting 2018

Outra-luminaires Communication

Different wired and wireless network protocols can be used depending on the location, scale and distance of the luminaires and on the device types connecting to these luminaires.


Outra-luminaires Communication

Wireless Network Technology	Frequency	Range	Data Rate	Use Case / Advantage
Bluetooth LE 4.x	2.4 GHz	10 - 80 m	1 Mbps	Low cost, low power / good battery life
Bluetooth LE 5.0	2.4 GHz	50 - 200 m	125 Kbps - 2 Mbps	Low cost, wider range, wider data rate, better battery life
Wi-Fi	2.4 GHz & 5GHz	30 - 200 m	Upto 1 Gbps	High data rates, to be used in higher bandwidth applications such as video
Zigbee	2.4 GHz	50 - 150 m	250 Kbps	Low cost, used often in the Connected Home and Connected Building settings
LoRaWAN	868 MHz & 915 MHz	Upto 16 Km	< 50 Kbps	Long range, low bandwidth, very low power for extended battery life
3G	850/900/1900 MHz	14 - 18 Km	1 - 10 Mbps	Mature and commonly deployed longrange network
4G LTE - Cat 5	LTE bands	15 - 18 Km	300 Mbps	Long range - High bandwidth data application
4G LTE - Cat M	LTE bands	17 - 18 Km	1 Mbps	Long range - IoT application
NB-IoT	LTE bands	Upto 22 Km/35 Km	170/250 Kbps	Long range - IoT application
5G	3.5 GHz / 24-28	Max 100 Km	Upto 20 Gbps	New protocol with a large variety of use cases

Selecting the most relevant network protocol depends on the application used along with the luminaire, from controlling lights to providing more advanced functions. (e.g. gunshot detection, etc.)

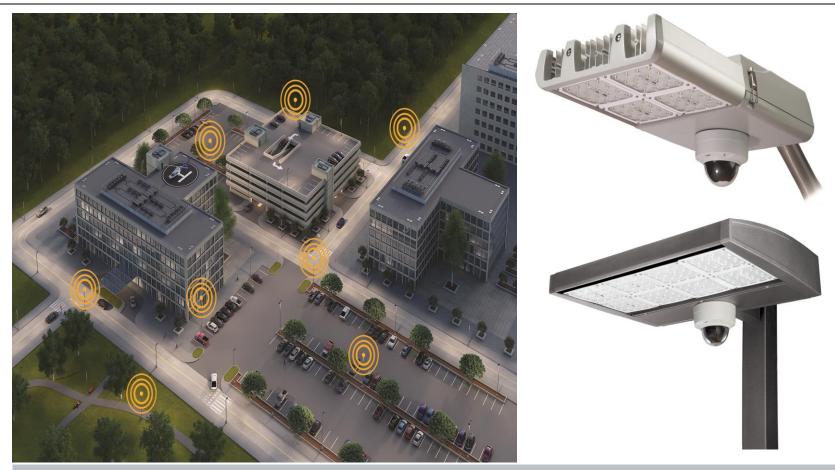
Intra-luminaires Communication

Intra-luminaires Comparing SR/DALI to other standards

	0 – 10V	DALI	USB	I2C
Data & Power	Not Possible	2 Wire	4 Wire	4 Wire
Communication	Analog, Uni-directional, No Switch to Off	Digital, Bi-directional, Sufficient Speed	Digital, Bi-directional, Very High Speed	Digital, Bi-directional, High Speed
Portfolio Synergy	High	High	Low	Low
Eco System	Strong in NA, Declining in EU	Strong in EU, Emerging in NA	Stong Globally, but not yet in lighting	None
Ease of Design-in	High	High	Medium	Medium
Use Inside/Outside Fixtures	OK	ОК	OK	Only Inside
Daisey Chain Multiple Units (1:N)	No	Yes	No	Yes
Cost	Low	Medium	Low-Medium	Low

DALI can be an option for intra-luminaire communications.

The Internet of Things - How Sensors


Outdoor Sensors

	Local Sensing	Basic Network Sensing	Advanced Networked Sensing	
Use cases and technology	Energy savings with Presence Detection (PIR, Microwave) Light Detection (Cad)	Activity Detection (PIR, Microwave, Time of Flight, Camera, Bluetooth) Weather Measuring (Temperature, pressure, humidity, windspeed, fog, ice) Accident Reporting (Luminaire Tilt and Vibration)	Traffic reporting People counting Plate reading City air quality mapping Parking optimization Seismic event reporting Gunshot detection	
Value	\$	\$\$	\$\$\$\$	

The diversity of upcoming luminaire sensors requires interoperability.

The Internet of Things - How Sensors

Gunshot detection and video are examples of advanced sensor applications.

The Internet of Things - How Data

Data needs to be refined and analyzed to become useful.

Assurance of **compatibility** with mutual interoperability testing

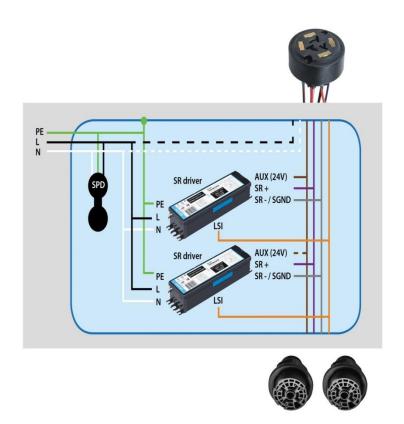
with **partners** and **certification**.

Standardization of following for Interoperability

Communication Agreement on protocol and data Electrical Assignment and V / I ratings

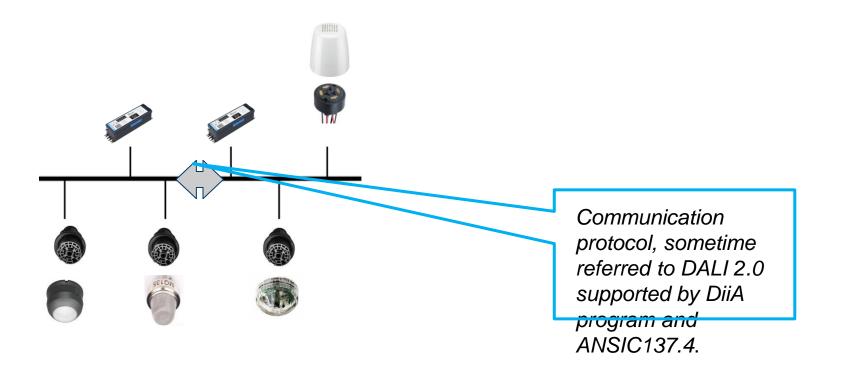
Mechanical Determination of dimensions and tolerances

DiiA Consortium (DALI 2))


Zhaga Consortium (Look18)

ANSI (C137.4 C136.54

Luminaire Sensor Ready (SR) Platform



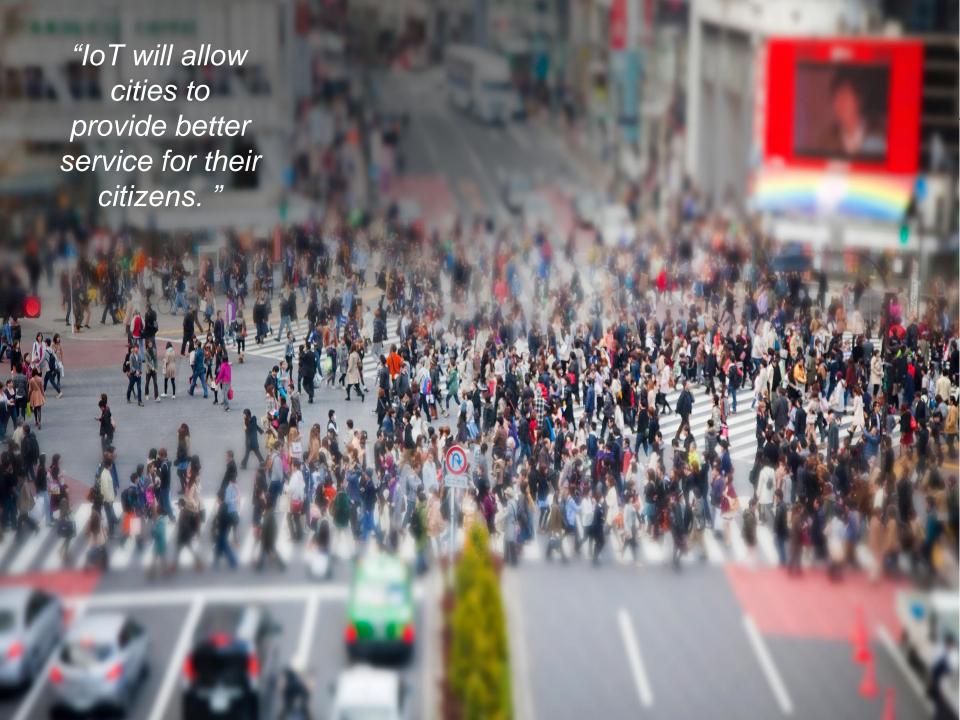
• Improved **communication** with bi-directional and communication between LED driver, controller and

The Internet of Things - How Cyber Security

Cyber Security in IoT lighting

DLC NLC Technical Requirements version 3.0

- UL 2900-1
- NIST IoT Cybersecurity Framework
- ISO 27001
- ISA/IEC 62443



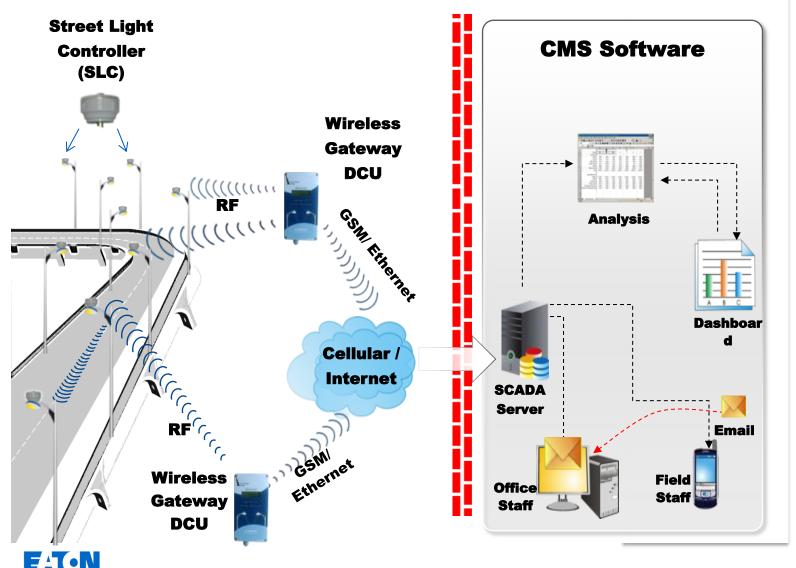
The Internet of Things - What

Photo Controls

- Fail off long life photo control Recommended for LED luminaires to maximize driver lifetime by eliminating day burners.
- Fail on long life photo control Similar to traditional style photo controls with superior design for longer life.
- Long life LED photocontrol manufacturers include Sun Tech, EYE and others.

Why install an LED luminaire that has a 15 to 20 year design life with a photo control that has to be replaced every 5 years?

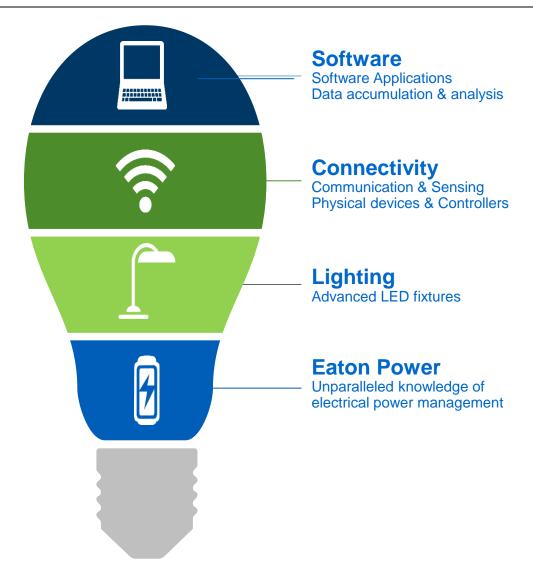
Typical Networked Control System


Technology - Scalable - Robust - Low Cost

.

Typical System Connectivity

LumenSafe - Energy Efficient LED Street Lighting and Smart Camera Technology



Eaton Corporation

Eaton Lighting Solutions ...

Leveraging the Lighting Infrastructure

Cities should leverage the lighting real estate when upgrading HID to LED

- Addition of a connected solution can help to automate and link key services currently fragmented
- From street lights with energy & maintenance...to parking meters...to traffic management... etc.
- Be smarter & work smarter, be more efficient and drive to eliminate silo management

Cities with a common, single network can continue to add features in the future

- Add new services and new sensors to add new value and features
- Utilize open API (application programming interface) to drive innovation with APPs & software
- Improving public safety helps drive growth & commerce and enhances the lives of its citizens

Must solve new, cross-department sales channel and generate value for the citizen through direct or indirect interactions

How do we achieve our vision... We do more to improve safety

"To improve the quality of life and the environment through the use of power management technologies and services..."

Eaton is adding value & improving security with our LED luminaires

We Conserve Energy

We Improve Safety

We Create Experiences

We Connect Communitie

Streetworks / McGraw-Edison / Lumark 2018 Product Introduction

Camera Integration

- Ideal for highly trafficked or safety conscious areas
 - Roadways, intersections, schools, public facilities, retail, hotels
- All camera and networking equipment integrated to the luminaire
 - "Plug and play" approach
 - Improved aesthetic over pole bolt-on approach
 - Multiple data backhaul options cellular, Wi-Fi, ethernet
 - Built-in SD card slot for local storage option and reduced bandwidth
- · Commercial and industrial rated solution from world-class camera partner
 - IP66, NEMA 4X and IK10 impact ratings
 - High nighttime performance
 - Digital remote zoom and focus
- Flexibility to work with customer's preferred software vendor
 - Multiple video compression and streaming file format options
- Luminaire power and control maintained on separate circuit

2018 launch - Galleon and Navion

Integrated Network Security Camera

Ease of installation

- Provides real-time surveillance with no wiring required beyond line power
- No complexity of multi-step installations, low-voltage power conversion, networking equipment or bulky boxes on poles

- Streamlined, outdoor-ready fixed dome camera that offers video quality up to HDTV 1080p
- Advanced compression techniques to reduce bandwidth and storage requirements
- Varifocal lens and remote zoom and focus eliminates the need for hands-on fine tuning

Flexibility in networking and software

- Variety of networking options for bringing the camera feed to a monitoring system
- Optimally designed for deployment in the video management system or security software platform of customer's choice

How do we achieve our vision... We strive to connect communities

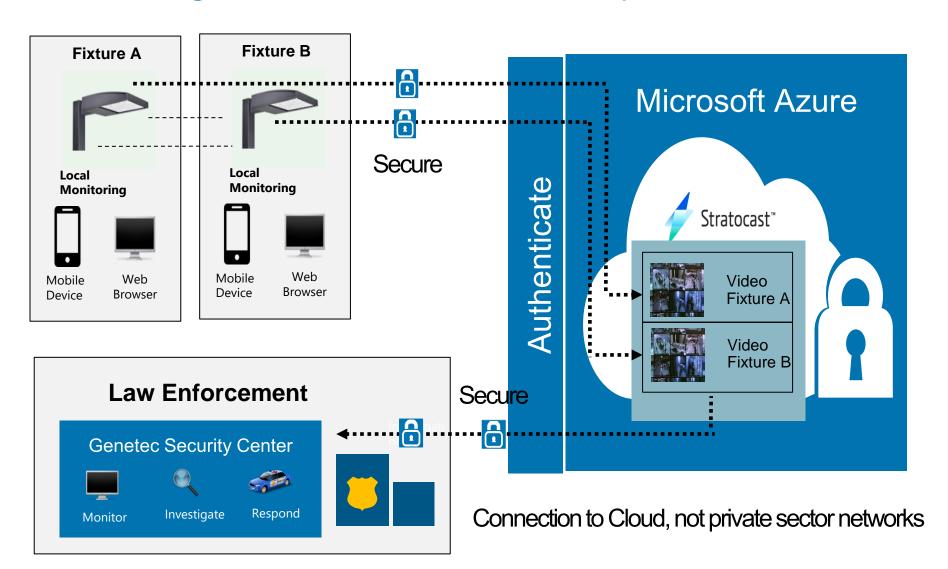
"To improve the quality of life and the environment through the use of power management technologies and services..."

Eaton is working with the Smart Cities Council and forming new alliances

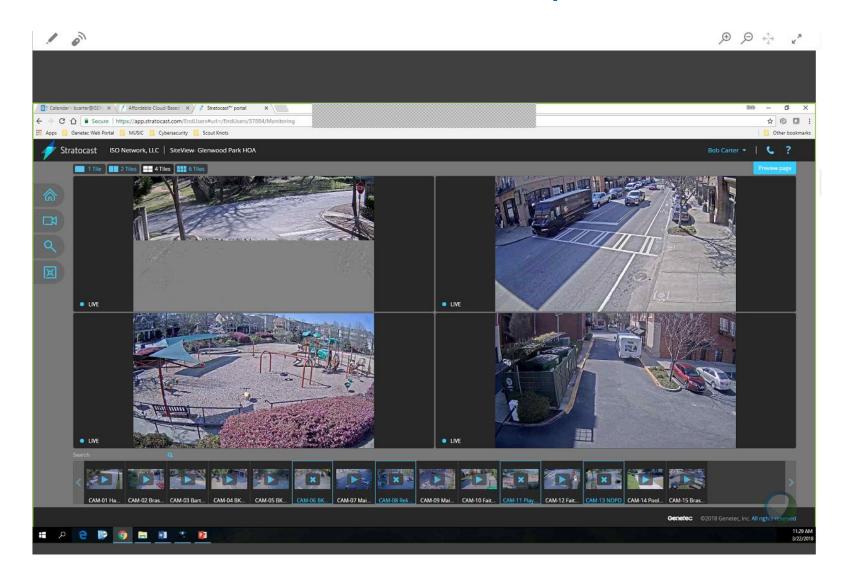
We Conserve Energy

We Improve Safety

We Create Experiences



We Connect Communities



Integrated Network Security Camera

Live Video Feed From Multiple Locations

City of Durango

Challenges of Change

Sept. 30, 2018 SALC

Initial LPEA Project Goals

- LPEA will convert 2,100 street lamps to LED
 - Existing wattages from 100-465W
- 50% energy reduction!! Reducing kWh
 - Coop \$ savings to our members
 - Reducing Carbon Emissions
- Anticipating little or no maintenance
 - 15 year life expectancy with minimal lumen loss

The Process to getting there

- Acceptance/Approval Process- The Easiest part
 - City/town requests for LEDs
 - Track record: EEC Success
 - 800 Commercial Lighting Rebates
 - \$2 Million in LED rebates
 - 5MW of Energy Savings
 - Coop recognition with peers and members
 - Payback
 - Initial anticipated Payback 7 Years
 - Maintenance/labor savings

Initial Projected PAYBACK

Replacement of 2,100 Street Lights		
		Annual Cost
	Annual kWh	of Power
HID Lamps	2,440,809	\$234,042
Lumen for Lumen LED Replacement	1,153,106	\$106,745
PROJECTED		
ANNUAL		A -
SAVINGS	1,150,665	\$127,297

Manufacturer Selection

- Technical specifications
- Competitive pricing
- Manufacturer reputation
- Product performance
- Support / Responsiveness
- Local Referrals

Challenges to installation

Internal:

- Operations: Number of lights to inventory
- Ownership, light counts, sizes, types and Billing.
- Installation- Internal or sub-contractor
- Replacement sizing of LEDs,... A new Paradigm

Goals to Illumination

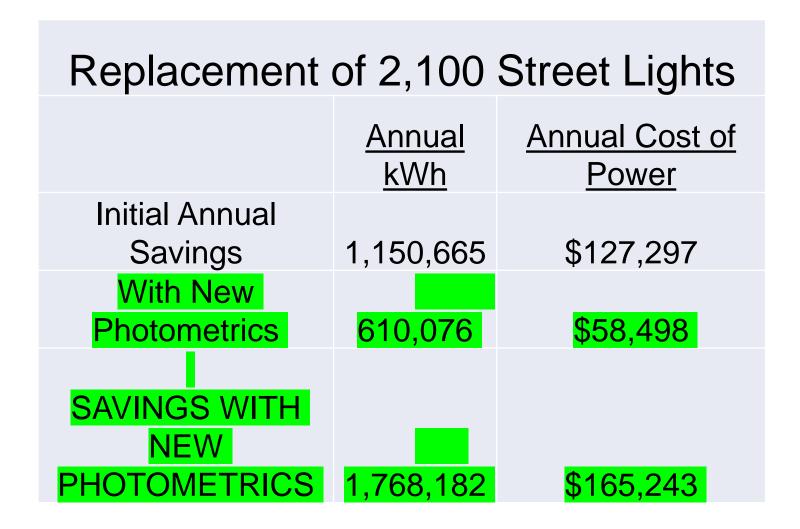
- Guidelines used, IES RP8 Standards
 - Existing HPS lights exceeded or did not meet safety guidelines
 - Overconservative about safety
- Reduce SKU's
 - Result could be replacing lower lumen HPS with higher lumen LED
- Lessens learned:
 - SKU's need to be well thought through
 - Accurate count of inventory

Field Test – 100 Luminaires

GOAL: Reducing lumens while surpassing standards for pedestrian and roadway safety

Lessons Learned from Field Testing

PHOTEMETRICS


Large Intersections

Small Intersections

Highways

New Photometric PAYBACK

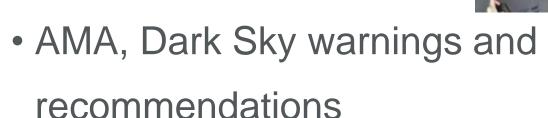
Communication and Marketing

- INTERNAL- Presentation on Features and Benefits to:
 - Employees, Staff, Operations, Engineering
 - Board members
- EXTERNAL-
 - Meetings with City contacts
 - Presentations to Town Coul
 - Press Release
 - Article in monthly magazine,

Streetlight retrofit underway

In the continued effort to save energy and provide further service to members, LPEA is retrofitting more than 2,000 streetlights owned by the co-op in the City of Durango.

"We're changing out the old highpressure sodium and metal halide streetlights to energy efficient LEDs," says Ray Pierotti, LPEA project specialist who oversees lighting technology. "Beyond the


FOR IMMEDIATE RELEASE, OCTOBER 11, 2017

NEWS RELEASE

Challenges to Installation

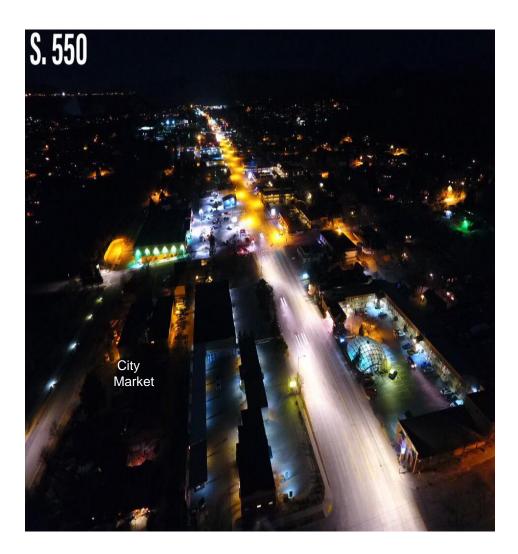
- Educate, Compromise, Concession
- Operational and City acceptance

LED STUMBLING BLOCK

- Initial Customer reaction
 - Too much light
 - Too Bright, too WHITE
 - Light Trespass
 - Don't want light at all

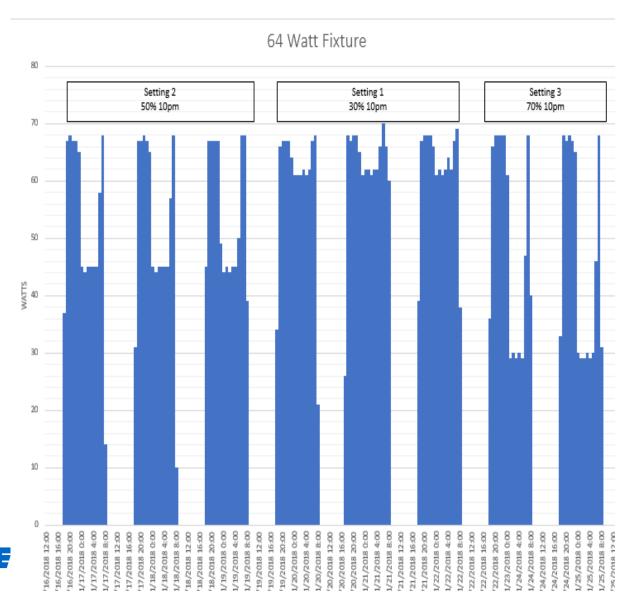
- Initial City/Town Reaction
 - Over reactive, failure to get information
 - Handling Calls from customers
 - Forwarding information to LPEA to address.

- Why is LPEA making this lighting changeout?
- Will my bill be reduced on the new LED rental lights?
- The new lights seem brighter than the old ones.
- How will this affect the light pollution?
- The light has a glare from my window
- What's the right amount of light?


- Why is LPEA making this lighting change out?
 - There is 70-80% energy savings using efficient LEDs. The new street lights will last 15 years with little or no maintenance.
 - The reduction of energy usage reduces our operating costs and saves our members money.
 - This aligns with our mission statement of providing reliable power (street lights always on) and being environmentally responsible.

- The new lights seem brighter than the old ones.
 - The old technology was inefficient and degraded quickly, often recycling and burnt out.
 - The new LEDs, will consistently function at peak performance, which was not the case with the old technology.
- How will this affect the light pollution?
 - All lights have <u>no up light greater than 90</u> degrees with <u>minimal backlight and glare</u>, meeting recommendations of Dark Sky Consortium.
 - The color or hue of light meets Dark Sky recommendations of 3,000 kelvin (k) or less.

Color/Hue: 3000 Kelvin



- The light has a glare from my window, what can you do?
 - We have backside and side shields that can be installed upon customer request.
 - At 10pm when pedestrian traffic is reduced, the photo sensor will begin dimming the light to 50%, still providing the proper amount of light but reducing light pollution during bedtime hours. They will be back to 100% by 5am.

Dimming Photocell

Dark Sky Compliance

- "BUG" (TM-15-07) Rating (**B**acklight, **U**plight, **G**lare)
 - No Uplight (above 90°)
 - Minimal Backlight and Glare
 - Example: 50W (Small) B1, U0, G1
- Dimming Photo Sensors

Residential: 50% at 10PM

Business: 50% at Midnight

Major Roadway: 30% at Midnight

Color/hue: 3,000 Kelvin

City/Town/Member Savings

- Some lights downsized from "medium" to "small"
 - Savings from \$24.08 rate to \$16.99 rate
 - Savings accumulate as exchanges occur
- Savings from LED fixtures will create further savings
 - Reduced energy consumption and maintenance should reduce all rental light rates in 2019 by approximately 25%
- City of Durango Annual savings of \$5,000 -\$10,000 a year

FINAL PAYBACK

75% reduction including downsizing, new photometric's, and dimming

Replacement of 2,100 Street Lights	
kWh Savings	1,900,000.0
Annual Cost of Power	\$180,000.0
CO2 reduction	3.0 Million lbs.
Payback for Coop	5.0 Years

LESSONS LEARNED

- It's a process; From buy in to installation
- Assume billing/inventory inaccuracies and issues
- Use IT for accountability tools, "Workforce, Survey123"
- Just because it's installed doesn't mean it's the right light
- Anticipate/Plan for potential problems ie. Kelvin, shields, photocells

Thank you for the opportunity.

For questions, please contact Bobby

BobbyBrooks@Eaton.com 770-486-3071

